一):实验准备
本篇可以接上篇:PCA实验人脸库-人脸识别(四)
对于上篇中数据库ORL人脸库和AR人脸库(下载地址在上篇中有),在上篇中讨论的单纯的PCA算法对两个数据库进行了准确率计算,本篇为了提高识别准确率,特采用一种新方法,并结合PCA一起实现识别,实验结果发现该方法能明显提高两者数据库的识别率。
二):关于支持向量机
一直以来感觉支持向量机是一个神奇的算法,当然里面的原理相应来说也比较难懂,感觉能把支持向量机原理理解并讲明白的估计对其他大多数的算法似乎都能理解,对于使用级的,这里能大概明白并会用支持向量机工具箱的就可以了。
关于原理,贴几个比较好的,学了一段时间感觉稍微能明白点,如果一点原理都不懂,硬着头皮先看吧,总会明白的。
一个SVM网站:
http://see.xidian.edu.cn/faculty/chzheng/bishe/index.htm
一个系列SVM知识集合:
http://www.blogjava.net/zhenandaci/category/31868.html
支持向量机SVM(Support Vector Machine)
三):关于支持向量机工具箱—LIBSVM
LIBSVM工具箱是台湾国立大学的一些人研究制作的,这里面把SVM的用法都集成化了,想怎么用,用哪个核函数等等只需要修改相应的参数就可以了,可以说使用起来非常方便的。像LIBSVM在matlab下的工具箱只有四个函数,其中通常情况下就用其中的两个函数,svmtrain训练模型函数和svmpredict预测数据函数,至于选择SVM算法中的哪个核函数直接写相应的参数就可以了。虽然新版的matlab也集成了SVM函数,但是感觉使用起来特麻烦,需要自己规定核函数,核函数参数等等。况且matlab自带的算法功能少,有些问题不适用。
关于LIBSVM在matlab下的使用,Matlab下安装LIBSVM:Matlab安装使用libsvm
其他平台:libsvm使用步骤: