LTP语法分析

本文详细介绍了词性标注的概念及其在自然语言处理中的应用,并通过863词性标注集提供了具体的词性分类示例,帮助读者理解不同词性的特征与用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/pipisorry/article/details/50306931

POS词性标注解释

词性标注(Part-of-speech Tagging, POS)是给句子中每个词一个词性类别的任务。 这里的词性类别可能是名词、动词、形容词或其他。 
采用863词性标注集

Tag    Description                        Example
a    adjective                                  美丽
b    other noun-modifier               大型, 西式
c    conjunction连词                     和, 虽然
d    adverb                                     很
e    exclamation惊叹词                哎
g    morpheme形态素; 词素        茨, 甥
h    prefix                                       阿, 伪
i    idiomidiom                              百花齐放
j    abbreviation缩写                   公检法
k    suffix字尾                              界, 率
m    number                                 一, 第一
n    general noun                        苹果
nd    direction noun                   右侧
nh    person name                     杜甫, 汤姆
ni    organization name            保险公司
nl    location noun                      城郊
ns    geographical name           北京
nt    temporal noun                    近日, 明代
nz    other proper noun其它专有名词    诺贝尔奖
o    onomatopoeia拟声              哗啦
p    preposition                           在, 把
q    quantity                                 个
r    pronoun代名词                    我们
u    auxiliary助词                       的, 地
v    verb                                      跑, 学习
wp    punctuation                       ,。!
ws    foreign words                   CPU
x    non-lexeme非词                 萄, 翱

from:http://blog.csdn.net/pipisorry/article/details/50306931


### 使用LTP工具进行中文句法依存分析 为了实现中文句法依存分析,可以采用哈工大开发的语言技术平台(Language Technology Platform, LTP)。该平台提供了多种自然语言处理功能,其中包括依存句法分析。通过Python接口调用LTP库中的`Parser()`类来完成这项工作[^2]。 #### 加载必要的模块并初始化解析器对象 首先需导入所需包,并创建一个`Parser`实例用于后续操作: ```python from pyltp import Parser import os MODELDIR = "/path/to/ltp/data" # 设置模型路径 parser = Parser() parser.load(os.path.join(MODELDIR, "parser.model")) ``` #### 对输入文本分词与标注词性 在执行依存关系分析之前,通常还需要对句子做预处理——即先将其分割成单词序列并对这些词语打上相应的词性标签。这一步骤可通过其他组件如Segmentor和Postagger配合完成。 #### 执行依存句法分析 准备好待分析的数据之后就可以调用`parse()`方法传入已经过初步加工后的词汇列表及其对应的词性标记作为参数来进行实际的依存树构建过程了: ```python words = ["他", "送", "了一本书"] postags = ['r', 'v', 'm'] arcs = parser.parse(words, postags) print("\t".join(f"{arc.head}:{arc.relation}" for arc in arcs)) ``` 上述代码片段展示了如何打印出每个词语与其父节点之间的连接方式以及它们之间存在的语法关联类型。 对于大规模数据或者希望获得更加直观的结果展示时,则可能需要用到额外的技术手段比如NetworkX图形绘制库等辅助工具;不过需要注意的是,在某些情况下可能会遇到兼容性方面的问题,这时则建议调整环境配置以确保程序正常运行[^4]。 当不再需要使用此资源时记得释放它所占用的空间以免造成不必要的浪费: ```python parser.release() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值