Sigmod/Softmax变换

本文详细介绍了Sigmoid和Softmax函数的定义、性质及应用。Sigmoid函数用于二分类问题,可将实数映射到(0,1)区间;Softmax函数则用于多分类问题,将实数向量转化为概率分布。

sigmoid函数/Logistic 函数

取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。

sigmoid函数性质

1 ”对称”:1−σ(s)=σ(−s)

2 “导数”:σ′(s)=σ(s)(1−σ(s))

3 sigmoid 原函数及导数图形如下:


Note: 从导数表达式可知,logit梯度最大为0.25。

logistic函数用于数据归一化

新数据=1/(1+e^(-原数据))

P(i)=1/1+exp(−θ'x)

这个函数的作用就是使得P(i)在负无穷到0的区间趋向于0,在0到正无穷的区间趋向于1。同样,函数(包括下面的softmax)加入了e的幂函数正是为了两极化:正样本的结果将趋近于1,而负样本的结果趋近于0。这样为多类别分类提供了方便(可以把P(i)看作是样本属于类别i的概率)。

logit(P) = log(P / (1-P)) = a + b*x 以及 probit(P) = a + b*x

这两个连接函数的性质使得P的取值被放大到整个实数轴上。

事实上可以把上面的公式改写一下:

P = exp(a + b*x) / (1 + exp(a + b*x)) 或者 P = pnorm(a + b*x)(这个是标准正态分布的分布函数)

Note: 上半部分图形显示了概率P随着自变量变化而变化的情况,下半部分图形显示了这种变化的速度的变化。可以看得出来,概率P与自变量仍然存在或多或少的线性关系,主要是在头尾两端被连接函数扭曲了,从而实现了[0,1]限制。同时,自变量取值靠近中间的时候,概率P变化比较快,自变量取值靠近两端的时候,概率P基本不再变化。这就跟我们的直观理解相符合了,似乎是某种边际效用递减的特点。

[logistic回归的一些直观理解(1.连接函数 logit probit)]

神经网络中的激活函数:sigmoid函数/Logistic 函数-软饱和和硬饱和

[神经网络中的激活函数 ]

逻辑回归中的sigmod函数

[Machine Learning - VI. Logistic Regression逻辑回归 (Week 3) ]

数据的标准化(normalization)和归一化中的应用

[数据标准化/归一化normalization ]

某小皮

softmax

[关于softmax-CSDN博客]

Sigmoid 和 Softmax 区别

sigmoid

将一个real value映射到(0,1)的区间,用来做二分类。或者将一个k维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….),其中 bi 是一个 0~1 的常数,但是输出神经元之和不为 1.0。

softmax

把一个 k 维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….)其中 bi 是一个 0~1 的常数,输出神经元之和为 1.0,所以相当于概率值,然后可以根据 bi 的概率大小来进行多分类的任务。

[常用激活函数比较]

对于二分类问题

(如果最后一层输出层logit是1元的)sigmoid 和 softmax 是(完全)一样的,求的都是 cross entropy loss,而 softmax 可以用于多分类问题。

(如果最后一层输出层logit是2元的)sigmoid 和 softmax 是(等价)一样的。

[二分类 输出层使用两个神经元和只使用一个神经元的差异]

多类分类multi_label classification和多分类multi classification

多类分类multi_label classification和多分类multi classification的区别

softmax建模使用的分布是多项式分布,而logistic则基于伯努利分布。多个logistic回归通过叠加也同样可以实现多分类的效果,但是 softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类;多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别。

示例
result = torch.sigmoid(logits) if is_multi_label else torch.nn.functional.softmax(logits, dim=1)

其中logits = (batch_size, label_size)

result:

对于多类分类来说,每个样本的label_size个预测值都在0-1之间,但是和不为1。
对于多分类来说,每个样本的label_size个预测值都在0-1之间,且和不为1。

[softmax如何作用与多标签分类? - 知乎]

当然使用的loss也不一样

[BCELoss,BCEWithLogitsLoss和CrossEntropyLoss的区别]

from: Sigmod/Softmax变换_sigmoid变换_-柚子皮-的博客-CSDN博客

ref:

<think>首先,用户的问题是:“我想比较sigmoid与softmax函数在机器学习中的区别和应用场景 请问sigmoid函数与softmax函数的区别以及在分类任务中的应用”。我需要基于系统指令和用户可见层的要求来回答。 系统指令: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 用户可见层: - 回答结构清晰,帮助用户逐步解决问题。 - 保证回答真实可靠。 - 参考站内引用:引用[1]和引用[2]是关于sigmoid和softmax函数的对比。 参考站内引用: - 引用[1]:sigmoid函数常用于二分类,softmax函数常用于多分类,两者都起到压缩作用。 - 引用[2]:详细比较了sigmoid和softmax的区别:sigmoid用于多标签分类(多个标签作为正确答案),softmax用于多分类(一个正确答案);sigmoid输出范围[0,1],可视为概率;softmax输出多元分布,概率和为1。在二分类中,sigmoid针对两点分布,softmax针对多项分布。 我的回答需要结构清晰,逐步解决问题。结构建议: 1. 介绍sigmoid和softmax函数的基本定义。 2. 比较它们的区别。 3. 讨论在分类任务中的应用场景。 4. 生成相关问题。 使用中文回答。 数学表达式: - 行内:如$sigmoid(x)$ - 独立:如$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$ 引用站内内容时,在段落末尾添加引用标识,如[^1]。 回答大纲: 1. **引言**:简要介绍sigmoid和softmax函数在机器学习中的重要性。 2. **基本定义**: - 定义sigmoid函数。 - 定义softmax函数。 3. **区别**: - 输出范围。 - 适用任务。 - 概率解释。 - 在二分类中的异同。 4. **应用场景**: - Sigmoid在二分类和多标签分类中的应用。 - Softmax在多分类中的应用。 5. **总结**。 6. **相关问题**:生成2-3个相关问题。 确保内容真实可靠:基于标准机器学习知识。 现在,构建回答。</think>### Sigmoid函数与Softmax函数的区别及应用场景 在机器学习中,Sigmoid函数和Softmax函数都是常用的激活函数,它们可以将神经网络的输出转换为概率分布,便于分类任务。但它们的设计目的、数学特性和应用场景存在显著差异。下面我将逐步解释它们的区别和在分类任务中的应用,帮助您全面理解。 #### 1. **基本定义** - **Sigmoid函数**:也称为逻辑函数(Logistic Function),它将任意实数输入压缩到(0,1)区间内。数学表达式为: $$sigmoid(x) = \frac{1}{1 + e^{-x}}$$ 其中,$x$是输入值。输出值可解释为某个类别的概率,常用于二分类问题[^1]。 - **Softmax函数**:它将一个向量转换为一个概率分布,所有输出元素之和为1。数学表达式为: $$softmax(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$ 其中,$\mathbf{z} = [z_1, z_2, \dots, z_K]$是输入向量,$K$是类别总数,$i$表示第$i$个类别。Softmax适用于多分类问题,输出是一个多元分布[^2]。 #### 2. **主要区别** Sigmoid和Softmax的核心区别在于它们的输出特性和适用任务: - **输出范围与概率解释**: - Sigmoid函数输出单个值在$[0,1]$区间内,表示一个类别的概率(如正类概率为$P$,则负类概率为$1-P$)。这基于两点分布(Bernoulli Distribution),即只针对一个类别建模。 - Softmax函数输出一个向量,所有元素之和为1,表示多个类别的概率分布(如$P(y=1), P(y=2), \dots, P(y=K)$)。这基于多项分布(Multinomial Distribution),对多个类别同时建模[^2]。 - **适用任务**: - Sigmoid主要用于**二分类任务**(例如,判断邮件是否为垃圾邮件)或**多标签分类任务**(例如,一个图像同时包含多个标签,如“猫”和“狗”)。在多标签任务中,每个类别独立使用Sigmoid,输出多个概率值。 - Softmax主要用于**多分类任务**(例如,手写数字识别有10个类别),其中每个输入只能属于一个类别(互斥),输出概率和为1[^1][^2]。 - **在二分类中的异同**: - 当类别数为2时,Softmax可退化为类似Sigmoid的形式。但Sigmoid直接建模一个类别(如正类),而Softmax建模两个类别(正类和负类)。例如: - Sigmoid:输出$P(y=1) = sigmoid(x)$,则$P(y=0) = 1 - P(y=1)$。 - Softmax:输出$P(y=1) = \frac{e^{z_1}}{e^{z_1} + e^{z_0}}$,$P(y=0) = \frac{e^{z_0}}{e^{z_1} + e^{z_0}}$。 本质上,Sigmoid是Softmax在二分类时的特例,但Sigmoid更简洁,计算效率更高[^2]。 - **其他差异**: - **梯度行为**:Sigmoid的梯度在输入值较大时趋于0,可能导致梯度消失问题;Softmax的梯度计算涉及所有类别,更适合多分类优化。 - **输入维度**:Sigmoid处理标量输入,Softmax处理向量输入。 #### 3. **在分类任务中的应用场景** - **Sigmoid函数的应用**: - **二分类任务**:例如,逻辑回归模型中,Sigmoid将线性输出转换为概率(如$P(\text{正类}) > 0.5$则预测为正类)。在二分类神经网络中,最后一层常用Sigmoid。 - **多标签分类任务**:例如,图像标注任务中,一个图片可能同时属于“猫”和“户外”,每个标签独立使用Sigmoid输出概率(如Sigmoid输出$[0.9, 0.7]$表示两个标签的概率)。 - 优势:计算简单,适用于非互斥类别。但需注意,输出概率不保证和为1,可能需额外阈值处理。 - **Softmax函数的应用**: - **多分类任务**:例如,在卷积神经网络(CNN)中用于MNIST手写数字识别(10个类别),Softmax输出每个数字的概率分布(如$[0.1, 0.8, 0.1, \dots]$表示预测为数字1的概率最高)。 - **互斥分类场景**:如情感分析(正面、中性、负面),Softmax确保只有一个类别被选中。 - 优势:输出概率和固定为1,便于交叉熵损失函数优化。但在类别数多时,计算开销较大。 总结来说,Sigmoid更适合二分类或多标签任务(独立概率),而Softmax专为多分类任务(互斥概率)设计。选择时需考虑任务特性:如果类别互斥,优先用Softmax;如果类别可共存,用Sigmoid[^1][^2]。 #### 相关问题 1. Sigmoid函数在梯度下降中会遇到什么问题?如何缓解? 2. 在多标签分类任务中,除了Sigmoid,还有哪些激活函数可用? 3. Softmax函数在类别不平衡时如何优化?
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值