SLAM笔记三——贝叶斯滤波器

本文详细介绍了贝叶斯滤波器在SLAM中的应用,包括状态估计公式、递归贝叶斯滤波的预测与校正步骤。探讨了运动模型,如Odometry Model和Velocity-based Model,并触及传感器模型的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯滤波器

定义状态估计p(x | z, u) ,即又此时的observations和之前的控制命令,估计现在的状态。

  • 递归贝叶斯滤波器
    首先定义:bel(…)代表贝叶斯模型
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    由此得到了上一时刻位置的贝叶斯模型。

贝叶斯滤波器分为两步:
这里写图片描述
第一步很好理解,预测过程,即如何通过上一时刻位置的贝叶斯模型计算此刻的贝叶斯模型。
第二步,是校正过程&#x

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值