背景
首先问大家一个问题,什么是自动驾驶车辆的最大挑战?答案是理解行人的运动并且预知行人之后的轨迹。人类的运动可以被认为是多模态性的,即人类有可能在任何给定的时刻向多个方向移动。而这种行为是自动驾驶汽车面临的最大挑战之一,因为它们的行驶路线受人的影响很大。在本篇博客中,主要介绍几种经典的轨迹预测网络。
SS-LSTM: Social-Scene-LSTM
该文是比较早的用了多个模态的信息输入来预测人类的未来轨迹。文章的网络结构主要时基于RNNs的encoder-decoder架构。
动机
- 之前的工作很少将场景的信息和相邻的轨迹考虑到模型设计中,本文提出了一种基于LSTM的分层模型,该模型具有三个层次尺度,融合了所有可能影响行人轨迹的因素。
- 能够对人与人之间的交互关系进行很好的建模。
方法
大体框架

该文基于RNNs的架构,使用分层LSTM encoder分别对三个层次(个人,社会,场景)的信息进行特征提取,以及一个LSTM decoder预测人的未来轨迹。
个人层级
对输入的个人轨迹 X i = { x i − T o b s + 1 , ⋯ x i 0 } X_{i}=\{x_{i}^{-T_{obs}+1},\cdots x_i^0 \} Xi={ xi−Tobs+1,⋯xi0}使用LSTM进行编码,其中 x i t x_i^t xit表示第 i i i 个人在 t t t 时刻的位置。我们使用LSTM得到个人轨迹特征: p i t = L S T M p ( X i ) p_i^t = LSTM_p(X_i) pit=LSTMp(Xi

本文介绍了三种经典的人行轨迹预测网络模型,包括SS-LSTM、SocialGAN和Sophie。SS-LSTM利用多层次LSTM处理个人、社会和场景信息预测轨迹。SocialGAN引入了GAN架构,通过生成对抗网络预测社会可接受的轨迹。Sophie则增加了物理和社会注意力机制,更好地考虑环境和交互影响。这些方法在自动驾驶和人机交互领域具有重要意义。
最低0.47元/天 解锁文章
301

被折叠的 条评论
为什么被折叠?



