接受自己做题需要参考的现实

本文旨在帮助初学者在学习C++时遇到困难时找到正确的方法。通过参考他人代码,逐步培养独立解决问题的能力,强调心态调整和阅读程序的重要性。提供一些建议,如多看不同解决方案,以拓宽思路,减少对特定方法的依赖。

【来信】

  贺老师,现在我感觉学C++感觉很吃力,做题时经常没有头绪,不知道从哪里下手。很多的时候都是先参考一下别人的,然后自己在一点点的做,说得不好听 就感觉自己在抄别人的,这才刚开始我就这样 以后咋办啊。

【回复】

  当自己没有思路的情况下,可以参考一下别人的解答。关键的是,最后自己做出来。这是一个渐进的过程,你已经在这样做,这是对的。凡事有个过程,有人会很快捅破那层窗户纸,而有人需要的时间会长一些。你首先需要做到的是,看到自己的进步(进步一定有,关键是你眼睛往哪看),然后沉下心来,不要有那么多的自责,让自己能在面对中轻松一些。努力是必须的,但心态一定是要放松的。
  另外给你一个建议是,在你现在这种情况下,读的程序可能还是少了。所以,做不下去时,索性放开来多看一些别人的解答,你会发现同一个问题有多种解法,在同样的思路下写程序,可以有多种写法。这样,会把你的思绪,从试图就按老师讲过的某一种方法,或者书上看过的一种解法中解放出来,让你能够放的开一些。我观察到你可能因为认真而显得有些拘谨,所以提这样一个建议。




==================== 迂者 贺利坚 CSDN博客专栏=================

|==  IT学子成长指导专栏  专栏文章分类目录(不定期更新)    ==|

|== C++ 课堂在线专栏   贺利坚课程教学链接(分课程年级)   ==|

======== 为IT菜鸟起飞铺跑道,和学生一起享受快乐和激情的大学 =======



【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迂者-贺利坚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值