第四讲 数学公理化方法(上)

原创 2015年11月20日 16:37:20

公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一门数学建立成为演绎系统的一种方法。所谓基本概念和公理,当然必须反映数学实体对象的最单纯的本质和客观关系,而并非人们自由意志的随意创造。

那它有什么用的?下面给出三点(不是只有这三点,作用可使多的很):

  1. 这种方法具有分析、总结数字知识的作用。凡取得了公理化结构形式的数学,由于定理与命题均已按照逻辑演绎关系串联起来,故使用起来也较方便。
  2. 公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创立。
  3. 数学公理化方法在科学方法论上有示范作用。这种方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用。

看着似乎贡献非常大啊,哪位大牛发明了这种方法。很不幸,这种方法不是一个人,也不是一朝一夕相出来的。它可是有历史背景的(哎呀,要讲故事了,是不是兴趣来了)。根据历史发展,大致可分为三个阶段:

一是公理方法的产生阶段 大约在公元前三世纪,希腊的哲学家和逻辑学家亚里士多德总结了古代积累起来的逻辑知识,以演绎证明的科学(主要是数学)为实例,把完全三段论作为公理,由此推导出别的所有三段论法(共分了十九个格式)。因此可以认为,亚里士多德在历史上提出了第一个成文的公理系统。

亚里士多德的思想方法深深地影响了公元前三世纪的希腊数学家欧几里得,后者把形势逻辑的公理演绎方法应用于几何学,从而完成了数学史上的重要著作《几何原本》。《几何原本》的问世标志了数学领域中公理方法的诞生。

二是公理方法的完善阶段 欧氏几何的公理系统是不够完善的。其主要的不足之处可以概括为:

  1. 有些定义是不自足的,亦即往往使用一些未加定义的概念去对别的概念下定义。
  2. 有些定义是多余的,略去它毫不影响往后的演绎和展开。
  3. 有些定理的证明过程往往依赖于图形的直观。

另一方面,由于第五公设(即平行线公理)在陈述于内容上的复杂和累赘,古代学者们早就怀疑地指出,第五公设是不是多余的,它能否从其他公设、公理中逻辑地推导出来?而且进步一认为,欧几里得之所以把它作为公设,只是因为他未能给出这一命题的证明。因而,学者们纷纷致力于证明第五公设。

基于两千多年来在证明第五公设的征途上屡遭失败的教训。十九世纪俄国年轻数学家罗巴切夫斯基产生了与前人完全不同的信念:首先,认为第五公设不能从其余的公理几何作为定理来证明;其次,除掉第五公设成立的欧几里得几何之外,还可以有第五公设不成立的新几何系统存在。于是,他在剔除第五公设而保留欧氏几何其余公理的前提下引进了一个相反于第五公设的公理:“过平面上一已知直线外的一点至少可以引两条直线与该已知直线平行”。这样,罗巴切夫斯基在与前人完全不同的思想方法基础上构造了一个新的几何系统,它与欧几里得几何系统相并列。后来,人们又证明了这两个部分地互相矛盾的几何系统竟然是相对相容的(过会解释这个名词的意思),亦即假定其中之一无矛盾,则另一个必定无矛盾。如此,只要这两个系统是无矛盾的,第五公设与欧氏系统的其余公理就必定独立无关。现在人们就用罗巴切夫斯基的名字对这一新几何命名,并把一切不同于欧氏几何公理系统的几何系统统称为非欧几何。

非欧几何学中的一系列命题都和人们的朴素直观不相符合。但是,这种背离直观的几何学在逻辑系统内没有矛盾,演绎论证的严格性也是无瑕可击的。事实上,非欧几何给人们开拓了“空间”的概念(正如大家所知的,非欧几何的重要分支“黎曼几何”在爱因斯坦1915年创立“广义相对论”后,已得到了证实和应用)。非欧几何的产生,不仅为公理化方法进一步奠定了基础,而且为公理方法可以推广和建立新的数学理论提供了依据。

非欧几何的创立大大地提高了公理方法的信誉,接着便有许多数学家致力于公理方法的研究。希尔伯特于1899年发表的《几何学基础》一书,解决了欧氏几何的欠缺问题,完善了几何学的公理化方法,此书称为近代公理化思想的代表作。

三是公理方法的形式化阶段 欧氏《几何原本》表现的公理化可称为“实体公理化”,因为在这样的公理系统中,概念直接反映着数学实体的性质,而且那些概念、定义、公理和论证的表述往往束缚于直观概念的指导。但在希尔伯特于其《几何学基础》一书中对欧氏系统加以完善化以后,不仅在公理的表述或定理的论证中摆脱了空间概念的直观成分,而且给出和奠定了对一系列几何对象及其关系进行更高一级抽象的可能性和基础。也就说,人们可以在高度抽象的意义下给出公理系统,只要能满足系统中诸公理的要求,就可以使得该公理系统所设计的对象是任何什么事物,并且在公理化表述事物或对象之间的关系时,也可以具有其具体意义的任意性。另外,公理化方法形式化之所以取得成功,在很大程度上的得力于康托创始的抽象集合论,这里不再论述了,感兴趣的可以在网上找到更多相关资料。

版权声明:本文为博主原创文章,未经博主允许不得转载。

第四讲 数学公理化方法(上)

公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一门数学建立成为演绎系统的一种方法。所谓基本概念和公理,当然必须反映数...
  • u010182633
  • u010182633
  • 2015年11月20日 16:37
  • 752

在数学公理化浪潮中,我们错过了发展的好时机

在数学公理化浪潮中,我们错过了发展的好时机上世纪前半叶,数学公理化浪潮冲击一切,而我国正战乱之中,失去数学发展的好时机。解放之后,1956年,党中央发出“向科学进军”的号角。我们57年入学的这批学子,...
  • yuanmeng001
  • yuanmeng001
  • 2018年02月13日 13:35
  • 59

视觉slam14讲——第2讲 初识SLAM

关于SLAM 关于相机 slam框架 slam问题数学描述1 关于SLAMslam问题的本质:对运动主体自身和周围环境空间不确定性的估计尽可能使用不依赖于环境的传感器如laser、imu、camera...
  • qq_23225073
  • qq_23225073
  • 2017年10月25日 23:17
  • 245

MIT线性代数第四讲:LU分解

ALU分解 两个基本公式 LU分解 求L 行互换的情形 A=LU分解 A=LU分解是最基本的矩阵分解,L是指下三角矩阵,U是指上三角矩阵。U可以通过矩阵消元得到,那么L又...
  • qq_34535410
  • qq_34535410
  • 2018年01月27日 11:14
  • 33

数学与逻辑的融合

在上世纪初期,数学研究发生很的变化,逻辑公理化方法深度融入数学,使数学根深叶茂,快速成长。 1911-13年,英国数学家罗素(Bertrand Russell,1872-1970)在...
  • yuanmeng001
  • yuanmeng001
  • 2015年07月01日 03:18
  • 1000

数限的历史

第一章:历史上的数学危机1-1 什么是数学危机    为了讲清楚第三次数学危机的来龙去脉,我们首先要说明什么是数学危机。一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、...
  • ruixj
  • ruixj
  • 2006年03月20日 15:56
  • 5743

第三章 子网划分、变长子网掩码(VLSM)和TCP/IP

第三章 子网划分、变长子网掩码(VLSM)和TCP/IP 1、要创建子网,就需要从IP地址的主机部分中借出一定的位,并且保留他们用来定义子网地址 2、使用不同长度的子网掩码来了解一个网络或创建多个...
  • bluwin
  • bluwin
  • 2011年08月19日 11:07
  • 347

C#精髓-- GridView 72般绝技

 C#精髓-- GridView 72般绝技作者:清清月儿 快速预览:GridView无代码分页排序GridView选中,编辑,取消,删除GridView正反双向排序GridView和下拉菜单Drop...
  • lbh9158
  • lbh9158
  • 2007年06月04日 09:05
  • 8956

整理数学中一些名字的由来

可公度 毕达哥拉斯及其学派把“万物皆数”作为基本信念。在他们看来,一切事物和现象都可以归结为整数与整数的比,这就是所谓“数的和谐”。而他们相信宇宙的本质就在于这种“数的和谐”。在这种观念下,他们对几何...
  • paxhujing
  • paxhujing
  • 2016年06月15日 11:19
  • 592

认清性能问题

本文翻译自《Thinking Clearly About Performance》 作者  Cary Millsap, Method R Corporation, Southlake, Texas,...
  • mindfloating
  • mindfloating
  • 2013年09月10日 08:47
  • 3225
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第四讲 数学公理化方法(上)
举报原因:
原因补充:

(最多只允许输入30个字)