tf33: 图像降噪:卷积自编码

本文介绍了利用卷积自编码器进行图像降噪的实践,通过TensorFlow实现。讨论了模型结构和应用场景,并给出了实际效果展示。同时,提供了相关训练样本生成的方法链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MachineLP的Github(欢迎follow):https://github.com/MachineLP

MachineLP的博客目录:小鹏的博客目录

以前打比赛的大师,做的卷积自编码用来图像的降噪:样本是噪声图片,标签是没有噪声的图片。

整个结果很简单,跟自动编码器很像,结构上都是降维后升维(encoder-decoder)的过程,但是用途完全不一样。

这只是一个雏形,后面优化的空间很大,前段时间在做图像语义分隔,原理类似,但是图像语义分隔开始扩展到很多领域:无人驾驶,基于图片的三维重建等等,随之而来是:开山之作

以下是一个简单的一维卷积降噪自编码器的代码示例: ```python import tensorflow as tf # 定义模型 class Conv1DAutoencoder(tf.keras.Model): def __init__(self, filters, kernel_size, pool_size): super(Conv1DAutoencoder, self).__init__() self.encoder = tf.keras.Sequential([ tf.keras.layers.Conv1D(filters, kernel_size, activation='relu', padding='same'), tf.keras.layers.MaxPooling1D(pool_size, padding='same') ]) self.decoder = tf.keras.Sequential([ tf.keras.layers.Conv1D(filters, kernel_size, activation='relu', padding='same'), tf.keras.layers.UpSampling1D(pool_size) ]) def call(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded # 定义损失函数 def loss(model, x): reconstructed = model(x) mse = tf.keras.losses.MeanSquaredError() return mse(x, reconstructed) # 定义优化器 def train(model, train_dataset, epochs): optimizer = tf.keras.optimizers.Adam() for epoch in range(epochs): for step, x in enumerate(train_dataset): with tf.GradientTape() as tape: cost = loss(model, x) grads = tape.gradient(cost, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if (step + 1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, epochs, step + 1, len(train_dataset), cost.numpy())) # 测试模型 def test(model, test_dataset): for x in test_dataset: reconstructed = model(x) print('Original:', x.numpy()) print('Reconstructed:', reconstructed.numpy()) break # 加载数据集 (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = tf.expand_dims(x_train, axis=-1) x_test = tf.expand_dims(x_test, axis=-1) # 构建和训练模型 model = Conv1DAutoencoder(filters=32, kernel_size=3, pool_size=2) train_dataset = tf.data.Dataset.from_tensor_slices(x_train).batch(32) train(model, train_dataset, epochs=10) # 测试模型 test_dataset = tf.data.Dataset.from_tensor_slices(x_test).batch(1) test(model, test_dataset) ``` 这个模型使用了一个卷积层和一个最大池化层来编码输入数据,然后使用一个卷积层和一个上采样层来解码编码后的数据。损失函数使用均方误差,优化器使用Adam。在训练过程中,模型会在每个epoch结束时打印出损失值。在测试过程中,模型会将测试集中的第一个样本重构并显示原始图像和重构图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值