关闭

cannot find Toolkit in /usr/local/cuda-8.0

使用apt-get进行安装 sudo apt install nvidia-cuda-toolkit...
阅读(796) 评论(0)

SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit

SiftGPU的原始库可以编译通过。但不能使用,在使用时引出了一连串96个编译错误。...
阅读(512) 评论(1)

图像局部显著性—点特征(SiftGPU)

SIFT的计算复杂度较高。 SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)...
阅读(442) 评论(0)

nvcc fatal : Unsupported gpu architecture 'compute_11'

使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11' 问题。原因是CUDA7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。...
阅读(972) 评论(0)

Caffe: Vs13添加CUDA支持

右键工程 点击:Building Dependency 右击:Build Customizations 点击选项:CUDA 7.5...
阅读(607) 评论(0)

使用Eric构建Caffe应用程序-Baby年龄识别

训练好的Caffe网络结构,可以固定下来,直接载入程序作为数据库接口使用。本文使用Eric构建运行于Python环境下的图片识别应用程序。 若从0开始,一般可以使用最简单的六层网络,使用Caffe可以仅配置参数就可以构建简单的CNN,一般的六层网络是这样设置的: InPut——>Conv层——>Pooling层——>Conv层——> Pooling层/ ReLU整流层+pooling层——>全链接层——>softMax层——>输出类别概率。...
阅读(762) 评论(0)

使用Caffe预测遇到的问题

在使用网络预测图像时, prediction = net.predict( [input_image] ) 出现: net.image_dims[0] 不是整数情况,...
阅读(2830) 评论(0)

编译OpenCV遇到Qmake问题

Ubuntu安装OpenCv,出现:qmake: could not exec '/usr/lib/x86_64-linux-gnu/qt4/bin/qmake': No such file or directory...
阅读(1284) 评论(0)

DL for Vision:A Tutorial with Caffe 报告笔记

对机器学习、深度学习的一些介绍,包括若干深度学习的经典模型; Caffe 的 优势 (模块化、速度、社区支持等)、 基本结构 (网络定义、层定义、Blob等)和 用法 (模型中损失函数、优化方法、共享权重等的配置、应用举例、参数调优的技巧),以及 未来方向 (CPU/GPU 并行化、Pythonification、Fully Convolutional Networks等)。...
阅读(614) 评论(0)

ubuntu 安装 OpenCV-CUDA

0.这个尽量不要手动安装, Github上有人已经写好了完整的安装脚本: https://github.com/jayrambhia/Install-OpenCV...
阅读(1422) 评论(0)

避免关注底层硬件,Nvidia将机器学习与GPU绑定

近日,通过释放一组名为cuDNN的库,Nvidia将GPU与机器学习联系的更加紧密。据悉,cuDNN可以与当下的流行深度学习框架直接整合。Nvidia承诺,cuDNN可以帮助用户更加聚焦深度神经网络,避免在硬件性能优化上的苦工。 当下,深度学习已经被越来越多的大型网络公司、研究员,甚至是创业公司用于提升AI能力,代表性的有计算机视觉、文本检索及语音识别。而包括计算机视觉等流行的领域都使用了图形处理单元(GPU),因为每个GPU都包含了上千的核心,它们可以加快计算密集型算法。...
阅读(551) 评论(0)

组装自己的tesla超级计算机

原文链接: NVIDIA链接:http://www.nvidia.cn/object/tesla_build_your_own_cn.html...
阅读(1042) 评论(0)

使用PCL::GPU::遇到问题

一:使用GPU进行点云分割,理论上可以极大地加快分割速度; 于是对PCL1.7.1进行了编译,回到32位。 这难道是显卡驱动有问题?还是CUDA有问题,我只能孤独地在黑夜里提心吊胆地摸索着前行,一步一磕绊,痛苦不堪..... 路慢慢其修远兮,不想探索了!!!先放下,哪天想起来或者发现自己的错误在哪里了,再回头解决....
阅读(1852) 评论(0)

CUDA 编程实例:计算点云法线

简介:CUDA ,MPI,Hadoop都是并行运算的工具。CUDA是基于NVIDIA GPU芯片计算。 阐述:GPU有很多个核(几百个),每个核可以跑一个线程,多个线程组成一个单位叫做块。 举个例子: 有三个向量 int a, b, c; 我们要计算a和b的向量之和存放到c中。 一般C语言:for(int i=0; i CUDA编程做法: GPU中的每个线程(核)有一个独立序号...
阅读(1312) 评论(0)

CUDA知识普及

IT168 CUDA专题: http://www.it168.com/tag/3263_1.shtml 异构技术构建云计算平台:http://tech.it168.com/a2011/1215/1289/000001289157.shtml GPU优化与实例分析:http://tech.it168.com/a2011/1215/1289/000001289225.shtml...
阅读(697) 评论(0)

OpenCV中GPU模块使用

CUDA IT168的文章系列:文章有代码 CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行;2.传输数据到GPU;3.确定...
阅读(834) 评论(0)

CPU+GPU异构计算完全解析

工欲善其事,必先利其器。有一个好的计算工具是必须的! 并行计算:让处理的速度变得更快: 相对于串行计算,并行计算可以划分成时间并行和空间并行。时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题。以程序和算法设计人员的角度看,并行计算又可分为数据并行和任务并行。数据并行把大的任务化解成若干个相同的子任务,处理起来比任务并行简单。...
阅读(2556) 评论(0)

CUDA5.5入门文章:VS10设置

在开始学习之前,首先要做的就是找到一本好的教材,要知道一本好的教材可以让我们更加轻松地入门。在看了一些个CUDA编程相关的教材之后,我向大家推荐的一本教材叫做《GPU高性能编程CUDA实战》。本教材相比其他的教材而言,它讲得比较细,对于一些我们可能不太明白的知识点做了详细的说明。而且这本教材以层层深入的方式向我们展示了GPU的世界,从而引领我们进入CUDA编程的大门。        其他的教材的...
阅读(2031) 评论(0)
    个人资料
    • 访问:831302次
    • 积分:11583
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条