计算机视觉
文章平均质量分 53
wishchin
CV算法工程师:从事室内场景感知方面工作,完成算法实验和软件开发。
展开
-
CVPR 2022 最新350篇论文分方向汇总 / 代码
CVPR 2022 已经放榜,本次一共有2067篇论文被接收,接收论文数量相比去年增长了24%。在CVPR2022正式会议召开前,为了让大家更快地获取和学习到计算机视觉前沿技术,极市对CVPR022 最新论文进行追踪,包括分研究方向的论文、代码汇总以及论文技术直播分享。............转载 2022-08-15 10:24:51 · 1028 阅读 · 0 评论 -
人工机器:深度学习CNN到底实现了什么
现在的归纳式和生成式深度学习离AI还很遥远,AI更需要深度强化学习。参考:作为归纳学习的深度学习-https://blog.csdn.net/wishchin/article/details/71195098从泛函分析里得出的结论:模式识别的数学表示--https://blog.csdn.net/wishchin/article/details/74644489对一维信号识别和变长模式分析,我不甚了解,对LSTM处理变长一维特征之外的更强的作用也不是特别了解:https://blog.csdn.ne原创 2020-11-18 21:37:21 · 465 阅读 · 0 评论 -
CNN结构:色彩特征提取-从RGB空间到HSV空间(色彩冷暖判断)
色彩冷暖判断不管是什么色相,都有冷暖之分,即使是蓝色也有偏暖的蓝,即使是红色也有偏冷的红。色彩冷暖具有相对性色彩明度变高/变低的过程,色彩冷暖倾向会变得不明显。色彩纯度变高,冷暖倾向变明显。转载 2017-11-27 17:34:33 · 4231 阅读 · 0 评论 -
AI:PR的数学表示-传统方法PR
在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。原创 2017-07-07 23:34:04 · 3008 阅读 · 0 评论 -
图像的全局特征--HOG特征、DPM特征
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。 它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而...转载 2017-03-16 15:31:42 · 7210 阅读 · 0 评论 -
图像压缩Vs.压缩感知
SparseCoding,压缩感知。对样本集合进行超完备重建,使用非监督学习方法,寻找样本特征集的超完备基,而对任一样本来说,使用此组基的表示稀疏是稀疏的,即只有少量的基向量非0。小品文压缩感知科普文两则:原文链接:http://www.cvchina.info/2010/06/08/compressed-sensing-2/ 这几天由于happyharry...转载 2013-09-23 09:50:13 · 4978 阅读 · 0 评论 -
Metric Learning度量学习:**矩阵学习和图学习
ML的两条主要路线,从样本中学习一个度量,或者使用样本训练一个网络。一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。先;列举一些DML的参考资源,以后有时间再详细谈谈。转载 2016-05-18 19:23:38 · 5759 阅读 · 0 评论 -
图像特征理论综述
前言: 关于集合:在计算机科学领域,离散数学是非常重要的学科,在图像处理领域,这种重要性更加直观。 一:特征可靠性的来源:1. 数据离散化: 系统观测理论:物理世界存在某一实体,若对其进行描述和解析,需要观测系统及系统所提供的接口。作为图像分析系统的接口,实现的功能是完成实体的图像化,即是实体的可视化。 实体与人的视...翻译 2014-11-16 14:12:37 · 1830 阅读 · 0 评论 -
“局部图像特征描述概述”--樊彬老师
局部图像特征描述的核心问题是不变性(鲁棒性)和可区分性。由于使用局部图像特征描述子的时候,通常是为了鲁棒地处理各种图像变换的情况。因此,在构建/设计特征描述子的时候,不变性问题就是首先需要考虑的问题。转载 2013-10-29 19:13:26 · 1910 阅读 · 0 评论 -
***稀疏表达:向量,矩阵,张量
稀疏肯定是好的,关键是怎样稀疏,要得到什么样的稀疏,以及要获得怎样的模式 , 说到底还是专家데功劳。稀疏表达是近年来SP, ML, PR, CV领域中的一大热点,文章可谓是普天盖地,令人目不暇给。老板某门课程的课程需要大纲,我顺道给扩展了下,就有了这个上中下三篇介绍性质的东西。转载 2013-09-23 09:37:12 · 3339 阅读 · 0 评论 -
统计机器学习那些事
把统计方法引入机器学习领域,作为机器学习的一个方法论,取得了显著的成果。AI到底是不是一个完备性问题值得探讨,而模糊逻辑为探索语义完备性的应用范围开辟了一个好的方向,统计机器学习方法对规则的提取与模糊逻辑表象相似,统计机器学习方法妄图使用优良数据来表示规则,并使用动态数据描述规则的动态性,使模型成为动态模型,不断提高准确率和应用范围。转载 2013-09-23 09:53:19 · 2759 阅读 · 0 评论 -
资源帖:CV代码库搜集
2013计算机视觉代码合集一原文链接:http://www.yuanyong.org/blog/cv/cv-code-one切记:一定要看原文链接一、特征提取Feature Extraction:SIFT [1] [Demo program][SIFT Library] [VLFeat]PCA-SIFT [2] [Project]Affine-S转载 2013-09-23 16:29:36 · 1242 阅读 · 0 评论 -
CNN结构:色温-冷暖色的定义和领域区分(一)
转自知乎和百度百科:从零开始学后期 (色温的奥秘) 文章: 冷暖色区分?冷暖肤色适用于那些色系的彩妆? 文章:干货 |如何判断人体色冷暖?如何判断色彩冷暖?(值得收藏研读!) -蒜苗的回答 百科定义: 色温是表示光线中包含颜色成分的一个...原创 2017-11-22 15:06:22 · 8726 阅读 · 0 评论 -
在线场景感知:图像稀疏表示-ScSPM和LLC总结(lasso族、岭回归)
前言 场景感知应用于三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程。场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的关系,可以理解为一个通常的模式识别问题。论文系列对稀疏编码介绍比较详细...本文经过少量修改和注释,如有不适,请移步原文。 code下载:http://www.ifp....转载 2013-10-08 21:49:55 · 3427 阅读 · 0 评论 -
三维重建:深度传感技术的中外差异
原始文章:https://www.eetimes.com/document.asp?doc_id=1333597中文翻译:https://www.ednchina.com/news/201808221344.html本文只有几条简介,请拜访原文...3D传感技术在智能手机用户中很流行吗?它会是未来每一支智能手机的必备功能吗?手机的发展推动了3D相机的发展应用,而不是工业应用,也算是另一...转载 2018-11-09 15:33:56 · 1011 阅读 · 0 评论 -
个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?
文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...转载 2018-06-19 17:21:50 · 4790 阅读 · 0 评论 -
3D视觉传感器产业现状-2018年
总结一下,主要参考于MEMS市场调研 MEMS.ME, 必须找专业的分析和咨询公司才行,或者活跃在前沿的资深行业专家。市场分析只能给出大致的销售状况,还不能给出详细的技术数据对比。 从三维重建的算法、技术原理和效果参数上分析,结构光可以适应一般室内场景,而近距离场景则更适合使用TOF技术,而室外场景则更倾向于使用雷达。 在使用TOF的厂商中,Prim...转载 2018-07-10 14:10:30 · 11647 阅读 · 1 评论 -
GPC:使用GPC计算intersection容易出现的问题
在使用GPC计算多边形的交的时候,出现问题 //1.2. 另一种方法,判断新的多边形是否和老多边形相交 Poly cross = (PolyDefault) Clip.intersection( filed, polyNig ); 若filed 为两个分离的多边形,则出现计算问题: catch (Exception exception) { ...原创 2018-05-22 15:22:24 · 1278 阅读 · 0 评论 -
人工机器:机器学习的哲学原理、基础及完备性的来由
观测->假设->归纳->演绎->过拟合,这是ML的一般套路和基础指导准则。 2018年03月11日 14:37:44导言 对于人工智能,有诸多定义,也有诸多质疑。各家的定义不用多追究。从各个领域提出对机器学习的理解,同时也表示出对定义的狭隘理解。从《计算机科学的离散结构》、到《pattern recognition》、...原创 2019-06-17 14:40:27 · 1609 阅读 · 0 评论 -
CNN结构:色彩特征提取-色彩属性HSV空间(色彩冷暖初始)
来自于百科:色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,比如人类对颜色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。人眼对色彩的感知一般来源于来自于光源的直射色和物体表面的反射色。基础理论,查看百度经验:色彩基础知识 。下面文章摘抄了一小部分。原创 2017-11-23 17:49:13 · 7359 阅读 · 0 评论 -
图像局部显著性—点特征(SIFT为例)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 SalientDetection已经好就没有复习过了,DNN在识别领域的超常表现在各个公司得到快速应用,在ML上耗了太多时间,求职时被CV的知识点虐死...点探测总结(SIft、PCA-SIft、Su...原创 2015-04-20 11:32:33 · 14667 阅读 · 2 评论 -
3D特征:关于HFM和HBB
前景假设和包围盒,哈哈哈! (1): 要用到HBB,定义还不太清楚,来自于 VALVE Developer Community (https://developer.valvesoftware.com/wiki/Bounding_box)的 解释原创 2013-09-10 09:44:06 · 1044 阅读 · 0 评论 -
Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较
Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息转载 2017-05-04 11:44:33 · 5572 阅读 · 1 评论 -
参加EMCL感想
ECML,全名为欧洲机器学习会议,European Conference on Machine LearningECML5天,认识了许多来自各地的中国人(大部分是PhD学生),其中很多做得很好。感想很多。如果你开过会的话,可能这些感想你早已体会到了,如此请见谅。转载 2013-07-23 10:00:11 · 10447 阅读 · 0 评论 -
图像局部显著性—点特征(FREAK)
参考文章:Freak特征提取算法 圆形区域分割转载 2017-03-16 13:31:05 · 2591 阅读 · 0 评论 -
Apache Mahout:适合所有人的可扩展机器学习框架
Mahout 在极短的时间内取得了长足的发展。项目的关注点仍然可以归纳为我所说的 “3 个要点”:协同过滤(推荐机制)、聚类和分类。除此之外,这个项目还增加了其他一些功能。我将重点强调两个领域中的一些关键扩展和改进:机器学习的核心算法(实现),以及包括输入/输出工具、与其他库的集成点和更多参考示例的支持基础架构。然而,务必注意,本文对于现状的叙述并不完整。此外,由于篇幅有限,我只能通过寥寥数语简单介绍各项改进。建议读者阅读 Mahout 网站的“新闻”部分和各 Mahout 发布版的发布说明,以了解这方面的转载 2013-11-04 20:03:48 · 1148 阅读 · 0 评论 -
基于MapReduce的贝叶斯网络算法研究参考文献
关于分布式学习的论文、代码和资源整理。转载 2013-11-04 20:18:08 · 1601 阅读 · 0 评论 -
ML一些简单的资源
40个推荐链接转载 2014-03-25 14:19:17 · 1329 阅读 · 0 评论 -
Online ML那点事>-<!
在线学习算法有一些列方法,每种方法都可分解为以下几步:首先,算法接受一个实例;接着算法预测实例的标签;第三 算法接受实例的真实标签(有正确和错误之分,根据结果来调整算法)。第三步比较重要,因为算法根据标签反馈来更新算法参数。本文给出了一个简单데感知器模型和代码分析。 KeyWord:标签反馈;Survey:online machine learning is a model of induction that learns one instance at a tim翻译 2014-03-28 11:04:58 · 1197 阅读 · 0 评论 -
CV与IP:基础,经典以及最近发展
基础,经典以及最近发展(1)序(2)图像处理与计算机视觉相关的书籍(3)计算机视觉中的信号处理与模式识别(4)图像处理与分析(5)计算机视觉转载 2014-07-16 16:17:55 · 4005 阅读 · 0 评论 -
***K近邻Survey-Distance总结
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法:一个人坚持自己的兴趣是比较难的,因为太多的人太容易为外界所动了,而尤其当你无法从中得到多少实际性的回报时,所幸,我能一直坚持下来。毕达哥拉斯学派有句名言:“万物皆数”,最近读完「微积分概念发展史」后也感受到了这一点。同时,从算法到数据挖掘、机器学习,再到数学,其中每一个领域任何一个细节都值得探索终生,或许,这就是“终生为学”的意思。转载 2014-03-25 13:45:26 · 1507 阅读 · 0 评论 -
CaptCha的现状与未来
“验证码”( CAPTCHA )其实并不是各位网友总是在不同网站上看到的难以辨认的字母组合的代名词,而是“全自动区分计算机和人类的图灵测试”的俗称,顾名思义,它的作用是区分计算机和人类。转载 2014-11-13 10:40:16 · 1511 阅读 · 0 评论 -
semiautomatic annotated tools
在进行实验图像取样时,可能会用到大量的标签样本,拍摄大量图片进行手工标注要消耗大量时间,半自动化的标注工具可以节省一些时间。原文链接:http://blog.sina.com.cn/s/blog_67532f7c01014cf2.html转载 2016-05-18 19:27:27 · 400 阅读 · 0 评论 -
机器学习大家与资源
转载链接:http://blog.csdn.net/linuxcumt/article/details/8576020Machine Learning 大家(1):M. I. Jordan (http://www.cs.berkeley.edu/~jordan/) 在我的眼里,M Jordan无疑是武林中的泰山北斗。他师出MIT,现在在berkeley坐镇一方转载 2013-11-01 20:26:22 · 2339 阅读 · 0 评论 -
纹理特征:灰度共生矩阵
灰度共生矩阵:laws为一个常见데有用纹理特征,此文给出了源代码Matlab版本,C++版本已经丢失。原创 2013-07-17 14:58:00 · 1570 阅读 · 0 评论 -
Stanford概率图模型: 第一讲 有向图-贝叶斯网络
贝叶斯网络,亦称信念网络。使用DAG图表示属性之间데依赖关系,并使用条件概率表来描述属性데联合概率分布。若网络데结构已知,即属性之间데依赖关系已知,제训练贝叶斯网络데学习过程相对简单,只需要通过对训练样本进行计数,估计每个样本데条件概率表即可。但在现实应用中,一般依赖关系未知,一般需要先用数据集找出最为恰当的网络结构。转载 2013-11-04 20:14:10 · 3241 阅读 · 0 评论 -
图像局部显著性—点特征(SURF)
1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述);参考描述:图像特征点描述。 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文。 SURF对SIFT的改进: 引用Wiki百科中对SURF描述为:“ SURF (Speeded Up Robust Features) is a robust ...转载 2017-03-16 12:02:07 · 2275 阅读 · 0 评论 -
图像局部显著性—点特征(GLOH)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 相关介绍:局部特征显著性—点特征(SIFT为例) 从特征提取上说,GLOH使用了各向同性平均;从特征选择的角度上说,GLOH使用了PCA方法,体现领域专用同时丧失一定的多领域泛化能力。...转载 2017-03-09 17:23:58 · 4221 阅读 · 0 评论 -
图像局部显著性—点特征(Fast)
Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。原创 2017-03-16 16:58:02 · 995 阅读 · 0 评论 -
OpenCV:实现灰度直方图和单通道直方图拉伸
原文链接:http://blog.csdn.net/xiaowei_cqu/article/details/7600666 本文略有修改,如有疑问或者版权问题,请移步原作者或者告知本人。直接贴代码: //计算直方图 cv::MatND colorWish::getHist(const cv::Mat &image, int histSize)...转载 2015-09-15 15:24:14 · 4329 阅读 · 0 评论