wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

Python:Matplotlib 画曲线和柱状图(Code)

原文链接:http://blog.csdn.net/ikerpeng/article/details/20523679

参考资料:http://matplotlib.org/gallery.html   matplotlib画廊

有少量修改,如有疑问,请访问原作者!

首先补充一下:两种体系7种颜色 r g b y m c k (红,绿,蓝,黄,品红,青,黑)


在科研的过程中,坐标系中的XY不一定就是等尺度的。例如在声波中对Y轴取对数。肆意我们也必须知道这种坐标系如何画出来的。


 1:对数坐标图

    有3个函数可以实现这种功能,分别是:semilogx(),semilogy(),loglog()。它们分别表示对X轴,Y轴,XY轴取对数。下面在一个2*2的figure里面来比较这四个子图(还有plot())。

def drawsemilogx():
    w=np.linspace(0.1,1000,1000)  
    p=np.abs(1/(1+0.1j*w))  
         
    plt.subplot(221)  
    plt.plot(w,p,lw=2)  
    plt.xlabel('X')  
    plt.ylabel('y');
        
    plt.subplot(222)  
    plt.semilogx(w,p,lw=2)  
    plt.ylim(0,1.5)  
    plt.xlabel('log(X)')  
    plt.ylabel('y')  
        
    plt.subplot(223)  
    plt.semilogy(w,p,lw=2)  
    plt.ylim(0,1.5)  
    plt.xlabel('x')  
    plt.xlabel('log(y)')  
        
    plt.subplot(224)  
    plt.loglog(w,p,lw=2)  
    plt.ylim(0,1.5)  
    plt.xlabel('log(x)')  
    plt.xlabel('log(y)')  
    plt.show() 

如上面的代码所示,对一个低通滤波器函数绘图。得到四个不同坐标尺度的图像。如下图所示:


2,极坐标图像
    极坐标系中的点由一个夹角和一段相对于中心位置的距离来表示。其实在plot()函数里面本来就有一个polar的属性,让他为True就行了。下面绘制一个极坐标图像:

def drawEightFlower():
    
    theta=np.arange(0,2*np.pi,0.02)  
    plt.subplot(121,polar=True)  
    plt.plot(theta,2*np.ones_like(theta),lw=2)  
    plt.plot(theta,theta/6,'--',lw=2)  
         
    plt.subplot(122,polar=True)  
    plt.plot(theta,np.cos(5*theta),'--',lw=2)  
    plt.plot(theta,2*np.cos(4*theta),lw=2)  
    plt.rgrids(np.arange(0.5,2,0.5),angle=45)  
    plt.thetagrids([0,45,90]);
    
    plt.show();  

整个代码很好理解,在后面的13,14行没见过。第一个plt.rgrids(np.arange(0.5,2,0.5),angle=45) 表示绘制半径为0.5 1.0 1.5的三个同心圆,同时将这些半径的值标记在45度位置的那个直径上面。plt.thetagrids([0,45,90]) 表示的是在theta为0,45,90度的位置上标记上度数。得到的图像是:



3,柱状图:

核心代码matplotlib.pyplot.bar(leftheightwidth=0.8bottom=Nonehold=None**kwargs)里面重要的参数是左边起点,高度,宽度。下面例子:

def drawPillar():   
    n_groups = 5;     
    means_men = (20, 35, 30, 35, 27)  
    means_women = (25, 32, 34, 20, 25)  
       
    fig, ax = plt.subplots()  
    index = np.arange(n_groups)  
    bar_width = 0.35  
       
    opacity = 0.4  
    rects1 = plt.bar(index, means_men, bar_width,alpha=opacity, color='b',label=    'Men')  
    rects2 = plt.bar(index + bar_width, means_women, bar_width,alpha=opacity,color='r',label='Women')  
       
    plt.xlabel('Group')  
    plt.ylabel('Scores')  
    plt.title('Scores by group and gender')  
    plt.xticks(index + bar_width, ('A', 'B', 'C', 'D', 'E'))  
    plt.ylim(0,40);  
    plt.legend();  
    
    plt.tight_layout(); 
    plt.show();  


得到的图像是:



再贴一图:

这是我关于pose识别率的实验结果,感觉结果真是令人不可思议!(非博主原文!)

def drawBarChartPoseRatio():
    n_groups = 5    
    means_VotexF36 = (0.84472049689441, 0.972477064220183, 1.0, 0.9655172413793104, 0.970970970970971)  
    means_VotexF50 = (1.0,              0.992992992992993, 1.0, 0.9992348890589136, 0.9717125382262997)
    means_VFH36    = (0.70853858784893, 0.569731081926204, 0.8902900378310215, 0.8638638638638638, 0.5803008248423096)
    means_VFH50    = (0.90786948176583, 0.796122576610381, 0.8475120385232745, 0.8873762376237624, 0.5803008248423096)  
    
    fig, ax = plt.subplots()  
    index = np.arange(n_groups)  
    bar_width = 0.3  
    opacity   = 0.4  
    
    rects1 = plt.bar(index,             means_VFH36,    bar_width/2, alpha=opacity, color='r', label='VFH36'   )  
    rects2 = plt.bar(index+ bar_width/2,  means_VFH50,  bar_width/2, alpha=opacity, color='g', label='VFH50'   )  
   
    rects3 = plt.bar(index+bar_width, means_VotexF36,     bar_width/2, alpha=opacity, color='c', label='VotexF36')  
    rects4 = plt.bar(index+1.5*bar_width, means_VotexF50, bar_width/2, alpha=opacity, color='m', label='VotexF50')  
    
    plt.xlabel('Category')  
    plt.ylabel('Scores')  
    plt.title('Scores by group and Category')  
    
    #plt.xticks(index - 0.2+ 2*bar_width, ('balde', 'bunny', 'dragon', 'happy', 'pillow'))
    plt.xticks(index - 0.2+ 2*bar_width, ('balde', 'bunny', 'dragon', 'happy', 'pillow'),fontsize =18)

    plt.yticks(fontsize =18)  #change the num axis size

    plt.ylim(0,1.5)  #The ceil
    plt.legend()  
    plt.tight_layout()  
    plt.show()

柱状图显示:



4:散列图,由离散的点构成的。

函数是:

matplotlib.pyplot.scatter(xys=20c='b'marker='o'cmap=Nonenorm=Nonevmin=Nonevmax=Nonealpha=Nonelinewidths=Noneverts=Nonehold=None,**kwargs),其中,xy是点的坐标,s点的大小,maker是形状可以maker=(5,1)5表示形状是5边型,1表示是星型(0表示多边形,2放射型,3圆形);alpha表示透明度;facecolor=‘none’表示不填充。例子如下:

def drawStar():
    plt.figure(figsize=(8,4))  
    x=np.random.random(100)  
    y=np.random.random(100)  
    plt.scatter(x,y,s=x*1000,c='y',marker=(5,1),alpha=0.5,lw=2,facecolors='none')  
    plt.xlim(0,1)  
    plt.ylim(0,1)  
       
    plt.show() 


上面代码的facecolors参数使得前面的c=‘y’不起作用了。图像:



5,3D图像,主要是调用3D图像库。看下面的例子:

def draw3Dgrid():
    
    x,y=np.mgrid[-2:2:20j,-2:2:20j]  
    z=x*np.exp(-x**2-y**2)   
    ax=plt.subplot(111,projection='3d')  
    ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8)  
    ax.set_xlabel('x')  
    ax.set_ylabel('y')  
    ax.set_zlabel('z')  
       
    plt.show()

得到的图像如下图所示:



到此,matplotlib基本操作的学习结束了,相信大家也可以基本完成自己的科研任务了。下面将继续学习python的相关课程,请继续关注。

参考书目:

《python科学计算》

《matplotlib手册》


阅读更多
上一篇AI:机器人与关键技术--总是被科普
下一篇Boost多线程-替换MFC线程
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭