人脸识别
wishchin
CV算法工程师:从事室内场景感知方面工作,完成算法实验和软件开发。
展开
-
On Tutorial with Caffe--a Hands DIY DL for Vision
Caffe作为DL的一个学习框架,Caffe is a deep learning framework made with expression, speed, and modularity in mind.It is developed by the Berkeley Vision翻译 2015-04-09 17:51:00 · 1603 阅读 · 0 评论 -
Caffe RPN:把RPN网络layer添加到caffe基础结构中
在测试MIT Scene Parsing Benchmark (SceneParse150)使用FCN网络时候,遇到Caffe错误。 遇到错误:不可识别的网络层crop 网络层 CreatorRegistry& registry = Registry(); CHECK_EQ(registry.count(type), 1) &...原创 2018-03-14 09:56:25 · 455 阅读 · 0 评论 -
Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较
Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息转载 2017-05-04 11:44:33 · 5572 阅读 · 1 评论 -
人脸Pose检测:ASM、AAM、CLM方法总结
一不小心听懂了ASM、AAM、CLM算法,还是记录下来。人脸的Pose检测需要一个 SolvePNP 的过程,对于固定三维点集模型,找出二维点集对应的位姿。此外,在track时使用点集寻找一个最优的位姿起始,应该给出一个好的起始点。原创 2016-06-01 11:55:08 · 20804 阅读 · 22 评论 -
图像的全局特征--HOG特征、DPM特征
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。 它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而...转载 2017-03-16 15:31:42 · 7210 阅读 · 0 评论 -
人脸检测的harr检测函数
眼球追踪需要对人脸进行识别,然后再对人眼进行识别,判断人眼张合度,进而判断疲劳...解析:人脸检测的harr检测函数使用方法原创 2013-07-17 12:06:15 · 1032 阅读 · 0 评论 -
OpenCV: OpenCV人脸检测框可信度排序
使用OpenCV进行人脸识别时,使用 casecade.detectMultiScale 函数,可输出每个检测框的置信度原创 2017-04-18 16:48:04 · 1957 阅读 · 0 评论 -
图像的全局特征--用于目标检测
CNN广泛应用于目标检测的各个场景,残差网络在目标检测方面取得了领先结果。对于传统应用,使用全局特征+级联分类器的思路仍然被持续使用。常用的级联方法有haar特征+Adaboost决策树分类器级联检测 和HOG特征 + SVM分类器级联检测。 图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、...原创 2017-03-09 18:06:46 · 5662 阅读 · 0 评论 -
图像的全局特征--LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;转载 2014-06-26 10:52:11 · 4042 阅读 · 0 评论 -
OpenCV:OpenCV目标检测Hog+SWindow源代码分析
HOG检测计算大致的函数调用堆栈。原创 2017-03-21 16:50:26 · 907 阅读 · 0 评论 -
OpenCV:OpenCV目标检测Adaboost+haar源代码分析
Haar+Adaboost检测计算大致的函数调用堆栈。原创 2017-03-21 15:44:44 · 2657 阅读 · 0 评论 -
ICCV2015上的GazeTracker论文总结
SLAM问题先慢慢编译一段时间,赶紧拾起来GazeTrack的事情...... ICCV2015的大部分paper已经可以下载,文章列表在这个位置、 http://www.cvpapers.com/iccv2015.html 文章题目关于Gaze的论文有 Rendering of Eyes for Eye-Shape Regis原创 2016-03-24 13:45:01 · 3423 阅读 · 1 评论 -
Learning Face Age Progression: A Pyramid Architecture of GANs
前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。 CNN作为一个基本判别式模型简化为数学模型依然为一个函数映射f(x)->y; 基于CNN的检测模型数学模型为 L...翻译 2018-06-19 16:40:44 · 948 阅读 · 0 评论