图像特征
文章平均质量分 84
wishchin
CV算法工程师:从事室内场景感知方面工作,完成算法实验和软件开发。
展开
-
StyleAI:色调、感情色彩量化、色彩交流API-PCCS颜色体系
参考文章:日本色研配色體系PCCS。https://en.wikipedia.org/wiki/Color。 1965年前后人们通过生理学实验验证了Thomas Young的假设,在眼睛中的确存在三种不同类型的锥体。看看这个巴黎大学的知乎回答:为何人眼选择了390-700nm作为自身的感光范围?下图:人眼和蜂鸟的感光分布. 鸟的四种感色细胞,感...翻译 2018-09-20 14:29:42 · 5526 阅读 · 0 评论 -
AI:PR的数学表示-传统方法PR
在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。原创 2017-07-07 23:34:04 · 3008 阅读 · 0 评论 -
图像的全局特征--HOG特征、DPM特征
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。 它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而...转载 2017-03-16 15:31:42 · 7210 阅读 · 0 评论 -
图像特征理论综述
前言: 关于集合:在计算机科学领域,离散数学是非常重要的学科,在图像处理领域,这种重要性更加直观。 一:特征可靠性的来源:1. 数据离散化: 系统观测理论:物理世界存在某一实体,若对其进行描述和解析,需要观测系统及系统所提供的接口。作为图像分析系统的接口,实现的功能是完成实体的图像化,即是实体的可视化。 实体与人的视...翻译 2014-11-16 14:12:37 · 1830 阅读 · 0 评论 -
“局部图像特征描述概述”--樊彬老师
局部图像特征描述的核心问题是不变性(鲁棒性)和可区分性。由于使用局部图像特征描述子的时候,通常是为了鲁棒地处理各种图像变换的情况。因此,在构建/设计特征描述子的时候,不变性问题就是首先需要考虑的问题。转载 2013-10-29 19:13:26 · 1910 阅读 · 0 评论 -
人脸检测的harr检测函数
眼球追踪需要对人脸进行识别,然后再对人眼进行识别,判断人眼张合度,进而判断疲劳...解析:人脸检测的harr检测函数使用方法原创 2013-07-17 12:06:15 · 1032 阅读 · 0 评论 -
SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit
SiftGPU的原始库可以编译通过。但不能使用,在使用时引出了一连串96个编译错误。原创 2017-04-05 10:23:43 · 2035 阅读 · 1 评论 -
图像局部显著性—点特征(SiftGPU)
SIFT的计算复杂度较高。SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)原创 2017-03-27 17:04:48 · 2069 阅读 · 2 评论 -
OpenCV:Adaboost训练时数据扩增
更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。原创 2017-04-06 10:12:56 · 952 阅读 · 0 评论 -
图像的全局特征--用于目标检测
CNN广泛应用于目标检测的各个场景,残差网络在目标检测方面取得了领先结果。对于传统应用,使用全局特征+级联分类器的思路仍然被持续使用。常用的级联方法有haar特征+Adaboost决策树分类器级联检测 和HOG特征 + SVM分类器级联检测。 图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、...原创 2017-03-09 18:06:46 · 5662 阅读 · 0 评论 -
图像的全局特征--LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;转载 2014-06-26 10:52:11 · 4042 阅读 · 0 评论 -
OpenCV:使用OpenCV3随机森林进行统计特征多类分析
CNN作为图像识别和检测器,在分析物体结构分布的多类识别中具有绝对的优势。通多多层卷积核Pooling实现对物体表面分布的模板学习,以卷积核的形式存储在网络中。而对于统计特征,暂时没有明确的指导规则。opencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例,以随机森林为例。转载 2017-11-29 11:00:47 · 2614 阅读 · 0 评论 -
CNN结构:色彩特征提取-从RGB空间到HSV空间(色彩冷暖判断)
色彩冷暖判断不管是什么色相,都有冷暖之分,即使是蓝色也有偏暖的蓝,即使是红色也有偏冷的红。色彩冷暖具有相对性色彩明度变高/变低的过程,色彩冷暖倾向会变得不明显。色彩纯度变高,冷暖倾向变明显。转载 2017-11-27 17:34:33 · 4231 阅读 · 0 评论 -
CNN结构:色温-冷暖色的定义和领域区分(一)
转自知乎和百度百科:从零开始学后期 (色温的奥秘) 文章: 冷暖色区分?冷暖肤色适用于那些色系的彩妆? 文章:干货 |如何判断人体色冷暖?如何判断色彩冷暖?(值得收藏研读!) -蒜苗的回答 百科定义: 色温是表示光线中包含颜色成分的一个...原创 2017-11-22 15:06:22 · 8726 阅读 · 0 评论 -
StyleAI:白度-物理上,怎样才算白?
一、颜色的物理机制 去年冗杂的一篇文章:CNN结构-色彩空间建模;是从数学解析几何的观点进行分析颜色,来阐述颜色的正交性和完备性。此外,此篇CNN结构-色彩特征提取,从颜色的哲学基础来分析色彩。 此处,从物体色彩的物理机理来分析色彩。 电子能级跃迁是所有物质内在颜色的产生机制。简单的说如图所示,氧化后导致能带变化要么是高能级能量下降要么是低能级能...原创 2018-07-05 17:45:09 · 3133 阅读 · 0 评论 -
个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?
文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...转载 2018-06-19 17:21:50 · 4790 阅读 · 0 评论 -
CNN结构:色彩空间建模-色彩空间分析
原文: 色彩空间基础 好一个NB的知乎专栏:色彩空间基础 第一章:色彩空间基础 关于色彩分析,引出了专门的数学基础。整个过程给出了...原创 2017-11-21 18:12:31 · 1144 阅读 · 0 评论 -
CNN结构:色彩特征提取-色彩属性HSV空间(色彩冷暖初始)
来自于百科:色彩是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应。人对颜色的感觉不仅仅由光的物理性质所决定,比如人类对颜色的感觉往往受到周围颜色的影响。有时人们也将物质产生不同颜色的物理特性直接称为颜色。人眼对色彩的感知一般来源于来自于光源的直射色和物体表面的反射色。基础理论,查看百度经验:色彩基础知识 。下面文章摘抄了一小部分。原创 2017-11-23 17:49:13 · 7359 阅读 · 0 评论 -
CNN结构基元:纹理结构和纹理基元方程化GLOH、Gabor...(Code)
模式识别专注于寻找相同模式的共性和不同模式的分离。CNN把特征提取全局化,其中重要的一个是纹理特征,利用卷积核来表示纹理基元,用以重现模式,应如何显示表示。 第一次使用纹理特征,2012年,使用了灰度共生矩阵:灰度共生矩阵-/Laws特征。此后LBP特征也是一种常用的特征:局部二元模式LBP特征。 此外Gabor变换用以提取纹理,可以使用变换后的能量和方差进行计算特...原创 2017-12-26 11:02:28 · 5637 阅读 · 0 评论 -
图像局部显著性—点特征(SIFT为例)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 SalientDetection已经好就没有复习过了,DNN在识别领域的超常表现在各个公司得到快速应用,在ML上耗了太多时间,求职时被CV的知识点虐死...点探测总结(SIft、PCA-SIft、Su...原创 2015-04-20 11:32:33 · 14667 阅读 · 2 评论 -
3D特征:关于HFM和HBB
前景假设和包围盒,哈哈哈! (1): 要用到HBB,定义还不太清楚,来自于 VALVE Developer Community (https://developer.valvesoftware.com/wiki/Bounding_box)的 解释原创 2013-09-10 09:44:06 · 1044 阅读 · 0 评论 -
Haar、pico、npd、dlib等多种人脸检测特征及算法结果比较
Pico(Pixel Intensity Comparison-based Object detection)发表于2014年,不同于VJ的Haar特征,pico则是提取点对特征,对两个像素点进行对比。实验表明这种特征比Haar特征更为有效,且运算时间更短。但是点对提取意味着PICO的抗噪性能极差,场景可扩展性不强。另外通过NDP特征池是可以重建出原图的,也就是说特征池包含了原图片中的所有信息转载 2017-05-04 11:44:33 · 5572 阅读 · 1 评论 -
ProE复杂曲线方程:Python Matplotlib 版本代码(L系统,吸引子和分形)
对生长自动机的研究由来已久,并在计算机科学等众多学科中,使用元胞自动机的概念,用于生长模拟。而复杂花纹的生成,则可以通过重写一定的生长规则,使用生成式来模拟自然纹理。当然,很多纹理是由人本身设计的,其形成过程本身就是在人脑中进行“原胞生成”的过程。原创 2017-12-28 10:00:10 · 1921 阅读 · 0 评论 -
在线场景感知:图像稀疏表示-ScSPM和LLC总结(lasso族、岭回归)
前言 场景感知应用于三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程。场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的关系,可以理解为一个通常的模式识别问题。论文系列对稀疏编码介绍比较详细...本文经过少量修改和注释,如有不适,请移步原文。 code下载:http://www.ifp....转载 2013-10-08 21:49:55 · 3427 阅读 · 0 评论 -
图像局部显著性—点特征(FREAK)
参考文章:Freak特征提取算法 圆形区域分割转载 2017-03-16 13:31:05 · 2591 阅读 · 0 评论 -
图像局部显著性—点特征(SURF)
1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述);参考描述:图像特征点描述。 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文。 SURF对SIFT的改进: 引用Wiki百科中对SURF描述为:“ SURF (Speeded Up Robust Features) is a robust ...转载 2017-03-16 12:02:07 · 2275 阅读 · 0 评论 -
图像局部显著性—点特征(GLOH)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 相关介绍:局部特征显著性—点特征(SIFT为例) 从特征提取上说,GLOH使用了各向同性平均;从特征选择的角度上说,GLOH使用了PCA方法,体现领域专用同时丧失一定的多领域泛化能力。...转载 2017-03-09 17:23:58 · 4221 阅读 · 0 评论 -
行为识别特征综述
人体行为识别目前处在动作识别阶段,而动作识别可以看成是特征提取和分类器设计相结合的过程。特征提取过程受到遮挡,动态背景,移动摄像头,视角和光照变化等因素的影响而具有很大的挑战性。本文将较全面的总结了目前行为识别中特征提取的方法,并将其特征划分为全局特征和局部特征,且分开介绍了其优缺点。转载 2013-11-01 20:34:29 · 3688 阅读 · 0 评论 -
图像局部显著性—线特征
一维显著特征常见表示为边缘。边缘检测的预处理常用 高斯模糊;主要数学运算为计算一阶和二阶导数,寻找梯度和零交叉点,其中梯度计算可用快速卷积码实现;原创 2015-08-01 15:34:02 · 2102 阅读 · 0 评论 -
《SLIC Superpixels》阅读笔记
超像素在计算机视觉领域越来越流行。但是,低计算量的算法却很少。我们发明了一种原创的算法,使像素聚类为五维颜色和图像层,用来生成简洁整齐的超像素。我们的研究结果非常简单易用,效率很高,具备很好的实用价值。实验证明我们的算法计算消耗低,但是却达到或者超过了其他4种最新的(state-of-art)方法。这种结论是通过比较boundary recall和under-segmentation error得出的。转载 2013-12-19 14:49:38 · 2299 阅读 · 0 评论 -
SIFT算法总结:用于图像搜索
SIFT算法问题:而后面的特征向量以及匹配严重依赖主方向,一旦有偏差效果会显著下降; 图层金字塔的层如何取是个问题,如果取得不够紧密,会在匹配时出现偏差;大片平滑区域时,由于会过滤掉低对比度的点,因此特征点的提取有问题;4高维向量如何构建倒排索引并实现近似检索,是个难题;VA-file+ 的方法并不能完全解决问题。转载 2014-01-15 20:04:01 · 3200 阅读 · 0 评论 -
CaptCha的现状与未来
“验证码”( CAPTCHA )其实并不是各位网友总是在不同网站上看到的难以辨认的字母组合的代名词,而是“全自动区分计算机和人类的图灵测试”的俗称,顾名思义,它的作用是区分计算机和人类。转载 2014-11-13 10:40:16 · 1511 阅读 · 0 评论 -
SLAM: 图像角点检测的Fast算法(时间阈值实验)
作为角点检测的一种快速方法,FastCornerDetect算法比Harris方法、SIft方法都要快一些,应用于实时性要求较高的场合,可以直接应用于SLAM的随机匹配过程。算法来源于2006年的Edward Rosten 和 Tom Drummond的论文 “Machine learning for high-speed corner detection”,并在(在2010年再次被修订)原创 2015-10-25 16:26:36 · 2748 阅读 · 0 评论 -
SLAM: 图像角点检测的Fast算法(OpenCV文档)
官方链接:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm-for-corner-detection 原文链接:http://blog.csdn.net/candycat1992/article/details/22285979转载 2015-08-25 15:13:25 · 3528 阅读 · 1 评论 -
图像基本群运算--滤波
工业和消费领域,图像获取主要依赖于电子元件CMOS和CCD,以光电转化的形式转化为电信号。信号在传输的过程中会因为电信号的本身干扰,发生失真。常见的噪声有椒盐噪声、高斯白噪声等。因此有对应的滤波方法。原创 2015-04-20 10:42:25 · 2935 阅读 · 0 评论 -
三维建模:方法之CSG与B-Rep比较
三维模型特征表示方法: 计算机中表示三维形体的模型,按照几何特点进行分类,大体上可以分为三种:线框模型、表面模型和实体模型。如果按照表示物体的方法进行分类,实体模型基本上可以分为分解表示、构造表示CSG(Constructive Solid Geometry)和边界表示BREP(Boundary Representation)三大类。转载 2014-02-17 10:38:30 · 8421 阅读 · 0 评论 -
三维位姿:***图像特征-特征提取-姿态估计
从特征分类到特征提取:常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 并简要介绍位姿估计데一些方法。原创 2013-11-01 20:32:42 · 11555 阅读 · 0 评论 -
PCL:描述三维离散点的ROPS特征(Code)
前言: 三维点云为三维欧式空间点的集合。对点云的形状描述若使用局部特征,则可分为两种:固定世界坐标系的局部描述和寻找局部主方向的局部描述,ROPS特征为寻找局部主方向的特征描述。1.寻找主方向(对XYZ轴经过特定旋转)LFR: <1>.计算法线特征:这一步是非常耗计算量的,若达到可以接受的法线精度,此过程几乎占据了 整个计算过程的50%;可选择的...翻译 2016-05-18 19:13:06 · 3024 阅读 · 20 评论 -
OpenCV:OpenCV目标检测Hog+SWindow源代码分析
HOG检测计算大致的函数调用堆栈。原创 2017-03-21 16:50:26 · 907 阅读 · 0 评论 -
OpenCV:OpenCV目标检测Adaboost+haar源代码分析
Haar+Adaboost检测计算大致的函数调用堆栈。原创 2017-03-21 15:44:44 · 2657 阅读 · 0 评论