关闭

OpenCV:Adaboost训练时数据扩增

更准确的模型需要更多的数据,对于传统非神经网络机器学习方法,不同的特征需要有各自相符合的数据扩增方法。...
阅读(266) 评论(0)

图方法:二分无向图的联通子图查找

二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。...
阅读(300) 评论(0)

压缩映射:简单最邻近搜索-(SLH)Simple Linear Hash

有得必有失! 图像相似度搜索是图像处理中的基本问题。对于大数据结构的 有效的相似性检索 严重依赖于图像表达的压缩可行性和 一个好的数据结构索引。生成和索引图像编码的很多方法被提出,但是 现存的算法无法给出 索引一个大数据库 精确的内存需要值。我们提出了 基于随机映射的 一个简单的 图像数据的二进制压缩表达。 我们的分析给出了 开创性的 清晰地陈述 解决索引问题的 内存需要。 当应用于真实图像数据库上时,这些原理有了下面显著的提高:实验结果显示出新方法 比其他现有方法 利用更少内存,并且快几倍。...
阅读(558) 评论(0)

Metric Learning度量学习:**矩阵学习和图学习

ML的两条主要路线,从样本中学习一个度量,或者使用样本训练一个网络。 一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。先;列举一些DML的参考资源,以后有时间再详细谈谈。...
阅读(1729) 评论(0)

链接分析算法系列-机器学习排序

链接分析算法之:HITS算法:HillTop算法:PageRank算法: 机器学习排序:人工标注训练数据、文档特征抽取、学习分类函数、在实际搜索系统中采用机器学习模型. 文档方法:单文档方法;文档对方法;文档列表方法;...
阅读(473) 评论(0)

PythonOpenCV:MLP用于最近邻搜索

一:C++版本的链接:       OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvSt...
阅读(448) 评论(0)

C++版的LLC代码

ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。...
阅读(444) 评论(0)

Canopy聚类算法分析

与传统的聚类算法(比如 K-means )不同,Canopy 聚类最大的特点是不需要事先指定 k 值( 即 clustering 的个数),因此具有很大的实际应用价值。与其他聚类算法相比,Canopy聚类虽然精度较低,但其在速度上有很大优势,因此可以使用 Canopy 聚类先对数据进行“粗”聚类,(摘自于Mahout一书:Canopy算法是一种快速地聚类技术,只需一次遍历数据科技得到结果,无法给出精确的簇结果,但能给出最优的簇数量。可为K均值算法优化超参数..K....)...
阅读(920) 评论(0)

谱聚类、Chameleon聚类、PCCA、SOM、Affinity Propagation

谱聚类、Chameleon聚类、PCCA、SOM、Affinity Propagation...
阅读(1290) 评论(0)

Science上发表的超赞聚类算法

作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是, 类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他高局部密度的点的距离都比较大. 首先定义两个值: 局部密度$/rho_i$以及到高局部密度点的距离$/delta_i$: $/rho_i=/sum_j...
阅读(2589) 评论(8)

ML:流形学习

流形在某一点的维度就是该点映射到的欧氏空间图的维度(定义中的数字n)。连通流形中的所有点有相同的维度。有些作者要求拓扑流形的所有的图映射到同一欧氏空间。这种情况下,拓扑空间有一个拓扑不变量,也就是它的维度。其他作者允许拓扑流形的不交并有不同的维度。 自从2000年以后,流形学习被认为属于非线性降维的一个分支。众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Linear Embedding)。...
阅读(837) 评论(0)
    个人资料
    • 访问:832127次
    • 积分:11591
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条