关闭

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。...
阅读(80) 评论(0)

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影。没有人口统计信息。每个用户只给出一个ID,且不涉及其他私人信息。...
阅读(67) 评论(0)

CNN:Windows下编译使用Caffe和Caffe2

Windows下faster-rcnn的编译可以分为2个部分,caffe的编译和faster-rcnn的编译。由于原始的版本大多基于linux,感谢各位前辈的移植与分享,现在windows版本的在网上都可以找到。但对于初学者可能还是有一些坑要填。以下是我遇到的一些问题和解决方法,用以存档。...
阅读(425) 评论(1)

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题...
阅读(341) 评论(0)

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。...
阅读(1413) 评论(0)

EnforceLearning-主动强化学习

被动学习Agent由固定的策略决定其行为。主动学习Agent必须自己决定采取什么行动。...
阅读(1015) 评论(0)

EnforceLearning-被动强化学习

本章主要讲Agent如何从成功与失败中、回报与惩罚中进行学习。...
阅读(939) 评论(0)

AdaBoost--从原理到实现(Code:Python)

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法...
阅读(3717) 评论(0)

DNN:逻辑回归与 SoftMax 回归方法

为什么使用SoftMax方法:因为反向传播和更新方法简单,更直接且直观。 对于多类分类问题,是建立一个 软回归分类器还是建立多个二分类器呢?这依赖于你的多类是否互斥,软回归 分类器对集合的分类是划分而不是覆盖。 ................... 考虑一个计算机视觉的问题,如果你对图像分类 ,类别是 室内、室外市区、室外草地场景,你将使用软回归还是三个二分类器?若类别是室外场景、黑白图像、有人的图像,又将使用哪种方式? 答案是 第一种分类使用软回归,第二种分类使用多个二分类器,因为第一个类别集合是划分,...
阅读(5128) 评论(0)

时序分析:KMP算法用于序列识别

kmp算法是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。...
阅读(542) 评论(0)

ANN:DNN结构演进History—RNN

RNN通过引入神经元定向循环用于处理边变长问题,由此被称为递归网络; 再通过其他神经元(如果有自我连接则包括自身)的输入和当前值的输入,进行加权求和(logit)之后重新计算出新的行为,保存之前记忆。 通过时间轴展开成类似于FNN的新构架,因此可以使用BP算法进行网络训练; 而根据时间展开长序列会产生极深FNN,容易产生梯度的消失与爆炸问题,因此引入了LSTM-长短期记忆,保持一个常数误差流,以此保证梯度的不会爆炸消失; 用于恒稳误差,通常使用一个门单元进行误差流控制。...
阅读(833) 评论(0)

DeepMind用ReinforcementLearning玩游戏

本文从图像级别进行游戏,跨过特征-规则-策略的显示分层,有一定的趣味性。 说到机器学习最酷的分支,非Deep learning和Reinforcement learning莫属(以下分别简称DL和RL)。这两者不仅在实际应用中表现的很酷,在机器学习理论中也有不俗的表现。DeepMind 工作人员合两者之精髓,在Stella模拟机上让机器自己玩了7个Atari 2600的游戏,结果是玩的冲出美洲,走向世界,超越了物种的局限。不仅战胜了其他机器人,甚至在其中3个游戏中超越了人类游戏专家。...
阅读(1039) 评论(1)

PythonOpenCV--Rtrees随机森林

原文链接:Python opencv实现的手写字符串识别--SVM 神经网络 K近邻 Boosting、...
阅读(1365) 评论(0)

OnLineML:时序数据挖掘

关于时序分析: 我们跟随时间的脚步,试图解释现在、理解过去、甚至预测未来........ 时间序列是一种重要的高维数据类型,它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列,在经济管理以及工程领域具有广 泛 应用。 目前重点的研究内容包括时间序列的模式表 示、时间序列 的相似性度量和查询、时间序列的聚类、时间序列的异常检测、时间序列的分类、时间序列的预测等。...
阅读(1326) 评论(0)

ObjecT4:On-line multiple instance learning (MIL)学习

漂移问题是on-line tracking最主要的问题。引起漂移最主要的原因就是,分类器更新时使用的样本本身的准确率存在问题。为了解决这个问题。有的作者采取的方式是放弃掉tracker得到的结果。....。而本文作者处理的方式是:既然所得到的样本标签的准确率有问题,那么对得到的样本进行扩展,作为一个事件集。选出里面错误率最低的时间来更新目标的位置,也由此来更新分类器。准确率和速度都会好很多。...
阅读(617) 评论(0)

Online ML那点事>-<!

在线学习算法有一些列方法,每种方法都可分解为以下几步:首先,算法接受一个实例;接着算法预测实例的标签;第三 算法接受实例的真实标签(有正确和错误之分,根据结果来调整算法)。第三步比较重要,因为算法根据标签反馈来更新算法参数。 本文给出了一个简单데感知器模型和代码分析。    KeyWord:标签反馈; Survey: online machine learning is a model of induction that learns one instance at a tim...
阅读(753) 评论(0)
    个人资料
    • 访问:829182次
    • 积分:11566
    • 等级:
    • 排名:第1411名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条