关闭

推荐系统中基于深度学习的混合协同过滤模型

协同过滤的一个关键点是协同,即找到用户喜好相似的K个用户,一个多维向量的K近邻查找方法。 提出了一种Additional Stacked Denoising Autoencoder(aSDAE)的深度模型用来学习User和Item的隐向量,该模型的输入为User或者Item的评分值列表,每个隐层都会接受其对应的Side information信息的输入(该模型灵感来自于NLP中的Seq-2-Seq模型,每层都会接受一个输入,我们的模型中每层接受的输入都是一样的,因此最终的输出也尽可能的与输入相等)。...
阅读(157) 评论(0)

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题...
阅读(338) 评论(0)

时序分析:隐马尔可夫模型

在AI综合领域,HMM模型是离散贝叶斯网络,最主要用于非确定性(概率)推理。 上次的文章被标记为链接,真是有意思。HMM是一个稀疏的贝叶斯网络。 其中,维特比算法(Viterbi Algorithm)为一个经典算法,用于找到可能性最大的隐藏序列。 即是通常我们都有一个特定的HMM,然后根据一个可观察序列去找到最可能生成这个可观察序列的隐藏序列。...
阅读(2191) 评论(0)

时序分析:使用卡尔曼滤波

卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。 Overview of the calculation         The Kalman filter uses a system's dynamics model (e.g...
阅读(1070) 评论(0)

时序分析:HMM模型(状态空间)

关于HMM模型:隐马尔科夫模型 和动态贝叶斯网络...
阅读(1742) 评论(0)

时序分析:Kalman滤波(状态空间)

在现实生活中, 数据的出现大多数是以非平稳形式, 这就涉及到了动态数据所构成的时间序列的分解.关于时间序列的分解, PeterJ.Brochwell&RichardA.Davis在其著作《timeSerieS:TheoryandMethodS》中己指出:分解时间序列的目的旨在估计和抽取确定性成分Tt,St,Ct,以使残量再即随机项是一平稳过程.进而求得关于随机项的合适概率模型,分析它的性质,并连同...
阅读(1215) 评论(0)

时序分析:ARIMA模型(非平稳时间序列)

转载于一篇硕士论文....         ARIMA模型意为求和自回归滑动平均模型(IntergratedAut少regressive MovingAverageModel),简记为ARIMA(p,d,q),p,q分别为自回归和滑动平均部分的阶次,d为差分运算阶次,对于某些非平稳时间序列{ y(t) },其一般形式为              若将(1-B)^d   *y(t) 记为...
阅读(1942) 评论(0)

时序分析:ARMA方法(平稳序列)

憔悴到了转述中文综述的时候了........        在统计学角度来看,时间序列分析是统计学中的一个重要分支, 是基于随机过程理论和数理统计学的一种重要方法和应用研究领域.  时间序列按其统计特性可分为平稳性序列和非平稳性序列. 目前应用最多的是Box一JenkinS...
阅读(3361) 评论(0)

时序分析:DTW算法(基于模板)

对时序对象进行分析,使用KMP算法可以分析速率不变的模式,参考时序分析:欧式空间轨迹模式识别。对于速率发生变化的模式,需要用新的对速率要求松散的方法,DTW方法为一种广泛使用的方法。古老的DTW方法(Dynamic Time Wrapper) 此外,基于模板的方法也有MEI方法(Measured Equation of invariance)、MHI方法(OpenCV使用了-Forward-Backward MHI (before and after the historical figure to the...
阅读(1494) 评论(0)

时序分析:手势--空间轨迹模式识别

人体行为识别可以看做是图像处理与模式识别的一种。人的行为可以分为静态行为和动态行为,常用概念有Pose:静态行为;Action:短时间动作行为(简单动态语义);Activities:行为(长时间复杂动态语义);动态行为与时间相关,其模式分析使用到时序分析的方法。工程的设想是这样的:以简单随机森林为起始,然后转到HMM模型,最后如果用研和数据标记人员加入,则可以使用RNNs方法。...
阅读(1827) 评论(1)

时序分析:串匹配—Brute-Force算法

设有主串s和子串t,子串t的定位就是要在主串s中找到一个与子串t相等的子串。通常把主串s称为目标串,把子串t称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串t;不成功则指目标串s中不存在模式串t。 以下算法假设串采用顺序存储结构,即: #define MAXSIZE 50 typedef struct { char data...
阅读(516) 评论(0)

时序分析:串匹配-KMP算法

图像处理与模式识别的教科书使用大量的章节来描述空域的模式识别方法。从图像底层特征提取、贝叶斯方法到多层神经网络方法,一般不讨论到对象随时间变化的情况,视频处理应用和在线学习方法使研究对象开始向时域延伸。        从不同的角度来看待时序模式识别:时间序列分析基础        一些摘抄:              时间序列分析说白了就是寻找时间序列中的模式。如果是在确定性时间序列中...
阅读(432) 评论(0)

时序分析:KMP算法用于序列识别

kmp算法是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。...
阅读(542) 评论(0)

ANN:DNN结构演进History—LSTM网络

为了保持文章系列的连贯性,参考这个文章:DNN结构演进History—LSTM_NN。 LSTM使用一个控制门控制参数是否进行梯度计算,以此避免梯度消失或者爆炸。...
阅读(457) 评论(0)

ANN:DNN结构演进History—RNN

RNN通过引入神经元定向循环用于处理边变长问题,由此被称为递归网络; 再通过其他神经元(如果有自我连接则包括自身)的输入和当前值的输入,进行加权求和(logit)之后重新计算出新的行为,保存之前记忆。 通过时间轴展开成类似于FNN的新构架,因此可以使用BP算法进行网络训练; 而根据时间展开长序列会产生极深FNN,容易产生梯度的消失与爆炸问题,因此引入了LSTM-长短期记忆,保持一个常数误差流,以此保证梯度的不会爆炸消失; 用于恒稳误差,通常使用一个门单元进行误差流控制。...
阅读(832) 评论(0)

ANN:ML方法与概率图模型

— 产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs — 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM CRF条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。...
阅读(1964) 评论(0)

ANN:DNN结构演进History—LSTM_NN

LSTM通过强行设定一些神经元的自连接权重为1 ,并取消和其它神经元的连接权重,使得他们的贡献相当于直接穿过时间作用到输出上,故误差反向传播时是一阶的,不存在衰减或爆炸问题。这本质上相当于构建了多个反传通道,是一种概率最大化的方法。 如果换种理解方式,这本质上是在用神经网络训练一个有限状态机,加入权重为1的积分器使得可以接受类似A*B*C....的正则语言,也就是说在关键字符中间插入若干任意字符不影响输出结果,故具有长时记忆效果。...
阅读(3429) 评论(3)

OnLineML:时序数据挖掘

关于时序分析: 我们跟随时间的脚步,试图解释现在、理解过去、甚至预测未来........ 时间序列是一种重要的高维数据类型,它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列,在经济管理以及工程领域具有广 泛 应用。 目前重点的研究内容包括时间序列的模式表 示、时间序列 的相似性度量和查询、时间序列的聚类、时间序列的异常检测、时间序列的分类、时间序列的预测等。...
阅读(1321) 评论(0)

ObjecT4:On-line multiple instance learning (MIL)学习

漂移问题是on-line tracking最主要的问题。引起漂移最主要的原因就是,分类器更新时使用的样本本身的准确率存在问题。为了解决这个问题。有的作者采取的方式是放弃掉tracker得到的结果。....。而本文作者处理的方式是:既然所得到的样本标签的准确率有问题,那么对得到的样本进行扩展,作为一个事件集。选出里面错误率最低的时间来更新目标的位置,也由此来更新分类器。准确率和速度都会好很多。...
阅读(617) 评论(0)

目标跟踪ObjectT综述介绍

图像跟踪是一个不断发展的研究方向,新的方法不断产生,再加上其它学科的方法的引入,因此对于图像跟踪算法的分类没有确定的标准。对于所有的跟踪算法,需要解决两个关键问题:目标建模和目标定位[35]。以下根据目标建模所用的视觉特征和目标定位所用的方法对跟踪算法分类。...
阅读(848) 评论(0)
25条 共2页1 2 下一页 尾页
    个人资料
    • 访问:828145次
    • 积分:11561
    • 等级:
    • 排名:第1403名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:181条