关闭

DL for Vision:A Tutorial with Caffe 报告笔记

对机器学习、深度学习的一些介绍,包括若干深度学习的经典模型; Caffe 的 优势 (模块化、速度、社区支持等)、 基本结构 (网络定义、层定义、Blob等)和 用法 (模型中损失函数、优化方法、共享权重等的配置、应用举例、参数调优的技巧),以及 未来方向 (CPU/GPU 并行化、Pythonification、Fully Convolutional Networks等)。...
阅读(612) 评论(0)

caffe学习笔记--跑个SampleCode

测试Caffe是否工作正常,不做详细评估。...
阅读(1430) 评论(0)

ubuntu安装-Caffe依赖

参考链接:http://my.oschina.net/u/939893/blog/163921 1. 安装numpy相对简单,以下命令可以完成 apt-get install python-numpy apt-get install python-scipy 2. 安装matplotlib相对复杂一些 需要先安装其依赖的包libpng和freetype 安装libp...
阅读(815) 评论(0)

ubuntu 安装 OpenCV-CUDA

0.这个尽量不要手动安装, Github上有人已经写好了完整的安装脚本: https://github.com/jayrambhia/Install-OpenCV...
阅读(1414) 评论(0)

避免关注底层硬件,Nvidia将机器学习与GPU绑定

近日,通过释放一组名为cuDNN的库,Nvidia将GPU与机器学习联系的更加紧密。据悉,cuDNN可以与当下的流行深度学习框架直接整合。Nvidia承诺,cuDNN可以帮助用户更加聚焦深度神经网络,避免在硬件性能优化上的苦工。 当下,深度学习已经被越来越多的大型网络公司、研究员,甚至是创业公司用于提升AI能力,代表性的有计算机视觉、文本检索及语音识别。而包括计算机视觉等流行的领域都使用了图形处理单元(GPU),因为每个GPU都包含了上千的核心,它们可以加快计算密集型算法。...
阅读(550) 评论(0)

AI:***一文读懂ML,DB/NLP/算法全有了……

1.一个故事说明什么是机器学习 2.机器学习的定义 4.机器学习的方法 5.机器学习的应用–大数据 6.机器学习的子类–深度学习 7.机器学习的父类–人工智能 8.机器学习的思考–计算机的潜意识 9.总结 10.后记...
阅读(4105) 评论(0)

ML:自然语言处理NLP面试题

复杂特征集、合一语法以及词汇主义方法都是在原先理性主义框架(产生式或逻辑推理)框架下做出的重大贡献。尤其词汇主义方法的发展越来越得到语料库和统计学方法的支持,这也是经验主义和理性主义方法的相互融合。他们将成为自然语言处理技术的主流。...
阅读(7348) 评论(0)

CV/PR:模式识别与图像处理笔试题

人工智能与模式识别的研究已有多年,但似乎公认的观点认为它仍然非常困难。试 对你所熟悉的任一方向(如指纹识别、人像识别、语音识别、字符识别、自然语言理解等 )的发展状况进行描述。并设想如果你将从事该方向的研究,你打算如何着手,以建立有 效的识别理论和方法;或者你认为现在的理论和方法有何缺陷,有什么办法来进行改进? (500字以内即可,不要太长)...
阅读(4184) 评论(0)
    个人资料
    • 访问:827813次
    • 积分:11559
    • 等级:
    • 排名:第1403名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:181条