PCL系列——三维重构之泊松重构

本文介绍了一种使用泊松算法进行三维点云重构的方法,包括点云文件的读取、法向量的计算、泊松算法的实现及结果的可视化。程序支持*.pcd和*.ply两种格式的点云文件,并通过Kd树和法线估计等技术提高重构效果。

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


PCL系列

说明

通过本教程,我们将会学会:

  • 如果通过泊松算法进行三维点云重构。
  • 程序支持两种文件格式:*.pcd*.ply
  • 程序先读取点云文件,然后计算法向量,接着使用泊松算法进行重构,最后显示结果。

操作

  • 在VS2010 中新建一个文件 recon_poisson.cpp,然后将下面的代码复制到文件中。
  • 参照之前的文章,配置项目的属性。设置包含目录和库目录和附加依赖项。

//点的类型的头文件
#include <pcl/point_types.h>
//点云文件IO(pcd文件和ply文件)
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
//kd树
#include <pcl/kdtree/kdtree_flann.h>
//特征提取
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/normal_3d.h>
//重构
#include <pcl/surface/gp3.h>
#include <pcl/surface/poisson.h>
//可视化
#include <pcl/visualization/pcl_visualizer.h>
//多线程
#include <boost/thread/thread.hpp>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>

int main(int argc, char** argv)
{
	// 确定文件格式
	char tmpStr[100];
	strcpy(tmpStr,argv[1]);
	char* pext = strrchr(tmpStr, '.');
	std::string extply("ply");
	std::string extpcd("pcd");
	if(pext){
		*pext='\0';
		pext++;
	}
	std::string ext(pext);
	//如果不支持文件格式,退出程序
	if (!((ext == extply)||(ext == extpcd))){
		std::cout << "文件格式不支持!" << std::endl;
		std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
		return(-1);
	}

	//根据文件格式选择输入方式
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>) ; //创建点云对象指针,用于存储输入
	if (ext == extply){
		if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read ply file!\n") ;
			return -1;
		}
	}
	else{
		if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
			PCL_ERROR("Could not read pcd file!\n") ;
			return -1;
		}
	}

	// 计算法向量
  pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals(new pcl::PointCloud<pcl::PointNormal>); //法向量点云对象指针
  pcl::NormalEstimation<pcl::PointXYZ , pcl::Normal> n ;//法线估计对象
  pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>) ;//存储估计的法线的指针
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>) ;
  tree->setInputCloud(cloud) ;
  n.setInputCloud(cloud) ;
  n.setSearchMethod(tree) ;
  n.setKSearch(20);
	n.compute(*normals); //计算法线,结果存储在normals中

	//将点云和法线放到一起
  pcl::concatenateFields(*cloud , *normals , *cloud_with_normals) ;

	//创建搜索树
  pcl::search::KdTree<pcl::PointNormal>::Ptr tree2(new pcl::search::KdTree<pcl::PointNormal>) ;
  tree2->setInputCloud(cloud_with_normals) ;
	//创建Poisson对象,并设置参数
  pcl::Poisson<pcl::PointNormal> pn ;
	pn.setConfidence(false); //是否使用法向量的大小作为置信信息。如果false,所有法向量均归一化。
	pn.setDegree(2); //设置参数degree[1,5],值越大越精细,耗时越久。
	pn.setDepth(8); //树的最大深度,求解2^d x 2^d x 2^d立方体元。由于八叉树自适应采样密度,指定值仅为最大深度。
	pn.setIsoDivide(8); //用于提取ISO等值面的算法的深度
	pn.setManifold(false); //是否添加多边形的重心,当多边形三角化时。 设置流行标志,如果设置为true,则对多边形进行细分三角话时添加重心,设置false则不添加
	pn.setOutputPolygons(false); //是否输出多边形网格(而不是三角化移动立方体的结果)
	pn.setSamplesPerNode(3.0); //设置落入一个八叉树结点中的样本点的最小数量。无噪声,[1.0-5.0],有噪声[15.-20.]平滑
	pn.setScale(1.25); //设置用于重构的立方体直径和样本边界立方体直径的比率。
	pn.setSolverDivide(8); //设置求解线性方程组的Gauss-Seidel迭代方法的深度
	//pn.setIndices();

	//设置搜索方法和输入点云
	pn.setSearchMethod(tree2);
	pn.setInputCloud(cloud_with_normals);
	//创建多变形网格,用于存储结果
	pcl::PolygonMesh mesh ;
	//执行重构
	pn.performReconstruction(mesh);

	//保存网格图
	pcl::io::savePLYFile("result.ply", mesh);

	// 显示结果图
	boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("3D viewer")) ;
	viewer->setBackgroundColor(0 , 0 , 0) ;
	viewer->addPolygonMesh(mesh , "my") ;
	viewer->addCoordinateSystem (50.0);
	viewer->initCameraParameters() ;
	while (!viewer->wasStopped()){
		viewer->spinOnce(100) ;
		boost::this_thread::sleep(boost::posix_time::microseconds(100000)) ;
	}

	return 0;
}

  • 重新生成项目。
  • 到改项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。
  • 在命令行中输入recon_poisson.exe bunny.points.ply,执行程序。得到如下图所示的结果。
    泊松重构结果图
<think>嗯,用户想了解点云三维重构技术的实现方法和算法。首先,我需要回忆一下点云处理的基础知识。点云是由大量三维点组成的数据集,通常来自激光扫描或摄影测量。三维重构就是把离散的点云转换成连续的曲面或模型,这在逆向工程、自动驾驶等领域很重要。 用户提到的引用资料里提到了深度学习和分区处理的方法。深度学习在点云处理中应用广泛,比如PointNet可以直接处理无序点云,提取特征。而分区压缩的方法,比如专利中的步骤,可能涉及将点云分成变形区和非变形区,压缩非关键区域以减少数据量,这样能提高重建效率。 接下来,我需要整理常见的点云三维重构算法。首先是重建,基于隐式函数的方法,适合生成光滑曲面。然后是Delaunay三角剖分,生成三角网格,但处理大规模数据时效率可能不高。还有基于深度学习的算法,如Pix2Vox,通过神经网络生成体素模型。此外,Marching Cubes也是一种经典算法,用于从体数据生成表面网格。 实现步骤方面,可能需要数据预处理,比如去噪、下采样,然后选择合适的算法进行表面重建,最后优化网格。用户可能关心具体怎么实现,比如用Python或MATLAB,可能需要用到库如Open3D或PCL。 在参考资料中,引用[1]提到深度学习处理点云的无序性和特征提取,引用[2]介绍的分区压缩方法。需要将这些方法结合起来,说明如何提高效率。比如先用深度学习进行特征提取,再分区处理,压缩非关键区域,最后融合进行重建。 用户可能的问题可能涉及算法选择、效率优化、处理大规模数据的方法,或者深度学习的具体应用。比如,重建和Delaunay的区别,或者如何用PointNet进行特征学习。此外,性能优化方面,数据压缩和并行计算也是关键点。 需要确保回答结构清晰,分点说明方法、算法和步骤,同时结合引用中的分区和深度学习技术。可能还需要比较不同算法的优缺点,帮助用户根据需求选择合适的方法。最后,生成的相关问题要覆盖实现细节、优化策略和应用场景,引导用户深入探索。</think>### 点云三维重构技术实现方法与算法 点云三维重构技术通过将离散的三维点云数据转换为连续的几何模型(如网格或曲面),广泛应用于逆向工程、自动驾驶、虚拟现实等领域。以下是技术实现的核心方法和算法: --- #### **一、基础流程与关键技术** 1. **数据预处理** - **去噪与滤波**:移除离群点(如统计滤波、半径滤波) - **下采样**:减少数据量(如体素网格下采样) - **法向量估计**:为表面重建提供方向信息(如PCA算法) - **分区处理**:根据需求将点云分为关键区(变形区)和非关键区,压缩非关键区数据以提高效率[^2]。 2. **表面重建算法** - **隐式函数法**(如重建):通过求解隐式函数生成等值面 $$ \Delta \chi = \nabla \cdot \vec{V} $$ 其中$\vec{V}$为点云法向量场,$\chi$为隐式函数。 - **显式三角化法**(如Delaunay三角剖分):直接生成三角网格 - **深度学习法**:利用神经网络(如PointNet、Pix2Vox)从点云学习几何特征并生成体素或网格[^1]。 3. **后处理优化** - 网格平滑(Laplacian平滑) - 孔洞填充(基于插值或对称性补全) - 拓扑修复(合并重复顶点、移除孤立面片) --- #### **二、经典算法详解** 1. **重建(Poisson Reconstruction)** - **原理**:将点云法向量视为梯度场,通过方程求解隐式表面。 - **优点**:抗噪性强,适合封闭曲面。 - **缺点**:对法向量精度敏感,需预处理。 2. **Delaunay三角剖分** - **步骤**: 1. 构建三维Delaunay四面体 2. 根据密度或法向量裁剪无效四面体 3. 提取表面三角网格 - **局限**:计算复杂度高($O(n^2)$),需优化加速。 3. **基于深度学习的重建** - **PointNet++**:分层提取点云局部特征,支持端到端网格生成。 - **Pix2Vox**:将多视角点云投影为2D图像,通过3D CNN生成体素模型。 --- #### **三、实现工具与代码示例** 1. **Python实现(Open3D库)** ```python import open3d as o3d # 读取点云 pcd = o3d.io.read_point_cloud("input.pcd") # 重建 mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9) o3d.io.write_triangle_mesh("output.ply", mesh) ``` 2. **MATLAB实现(点云工具箱)** ```matlab ptCloud = pcread('input.ply'); gridSize = 0.1; fixed = pcdownsample(ptCloud, 'gridAverage', gridSize); mesh = pc2surfacemesh(fixed, 'poisson', 'Depth', 10); ``` --- #### **四、性能优化策略** 1. **数据分区压缩**:对非关键区域(如静态背景)降低分辨率。 2. **并行计算**:利用GPU加速深度学习推理或方程求解。 3. **增量式重建**:动态更新局部区域(适用于实时场景)。 ---
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值