8.1 为什么分布式训练越来越流行
近年来,深度学习被广泛应用到各个领域,包括计算机视觉、语言理解、语音识别、广告推荐等。在这些不同的领域中,⼀个共同的特点就是模型规模越来越大,比如 GPT-3 模型的参数量达到1750 亿。即使用1024张 80 GB 的 A100,那么完整训练 GPT-3 的时长都需要1个月。
模型规模的扩大,对硬件(算力、内存)的发展提出要求。
8.1.1 内存墙
训练 AI 模型时候所需要的内存一般比模型参数量还要多几倍,与之相比,AI 硬件上的内存大小仅仅是以每两年翻2倍的速率在增长。目前AI硬件更专注于提高硬件的峰值算力,但是通常以简化或者删除其他部分(例如内存的分层架构)为代价,这已不足以应付最新AI模型的训练。
目前 NLP 中的 SOTA Transformer 类模型的算力需求,以每两年750倍的速率增长,模型参数数量则以每两年240倍的速率增长。相比之下,硬件算力峰值的增长速率为每两年3.1倍,DRAM 还有硬件互连带宽增长速率则都为每两年1.4倍,已经逐渐被需求甩在身后。
硬件内存、算力的增长速度跟不上模型训练规模扩大的速度,这时就出现了“内存墙”问题。内存墙问题不仅与内存容量大小相关,也包括内存的传输带宽。这涉及到多个级别的内存数据传输。
8.2 常见的并行策略
单机多卡训练,即并行训练。神经网络的训练不仅需要多个设备进行计算,还涉及到设备之间的数据传输,只有协调好集群中的计算与通信,才能做高效的分布式训练。
假设神经网络中某⼀层是做矩阵乘法,其中输入的数据 的形状为,模型参数的形状为,那么,矩阵乘法输出形状为。
单机单卡的训练中,以上矩阵乘法,先计算得到 ,并将 传递给下⼀层,并最终计算得到的损失 ,然后在反向传播过程中,得到 ,用于更新 。(计算模型的损失更新模型)
分布式训练中,依据是切分 还是 的不同,分为“数据并行”和“模型并行”策略。
8.2.1 数据并行
数据并行,就是将数据 进行切分,而每个设备上的模型 是相同的。 如下图所示, 被按照第0维度平均切分到2个设备上,两个设备上都有完整的模型 。
这样,在两台设备上,分别得到的输出,都只是逻辑上输出的⼀半 (形状为),将两个设备上的输出拼接到⼀起,才能得到逻辑上完整的输出。
注意,因为数据被分发到了2个设备上,因此反向传播过程,各自设备上得到的 会不⼀样。因此在数据并行策略下,在反向传播过程中,需要对各个设备上的梯度进行AllReduce,以确保各个设备上的模型始终保持⼀致。
当数据集较大,模型较小时,由于反向过程中为同步梯度产生的通信代价较小,此时选择数据并⾏⼀般比较有优势,常见的视觉分类模型,如 ResNet50,比较适合采用数据并行。
AllReduce
AllReduce其实是一类算法,目标是高效得将不同机器中的数据整合(reduce)之后再把结果分发给各个机器。在深度学习应用中,数据往往是一个向量或者矩阵,通常用的整合则有Sum、Max、Min等。下图展示了AllReduce在有四台机器,每台机器有一个长度为四的向量时的输入和输出。
8.2.2 模型并行
所谓的模型并行,就是每个设备上的数据 是完整的、⼀致的,而模型 被切分到了各个设备上,每个设备只拥有模型的⼀部分,所有计算设备上的模型拼在⼀起,才是完整的模型。
如下图所示, 被按照第1维度平均切分到2个设备上,两个设备上都有完整的数据 。两个设备上的输出也需要通过拼接才能得到逻辑上的输出。
模型并行的好处是,省去了多个设备之间的梯度 AllReduce;但是,由于每个设备都需要完整的数据输入,因此,数据会在多个设备之间进行广播,产生通信代价。比如,上图中的最终得到的,如果它作为下⼀层网络的输入,那么它就需要被广播发送到两个设备上。 语言模型,如 BERT,常采用模型并行。
8.2.3 流水并行
当神经网络过于巨大,无法在一个设备上存放时,除了上述的模型并行的策略外,还可以选择流水并行。 流水并行指将网络切为多个阶段,并分发到不同的计算设备上,各个计算设备之间以“接力”的方式完成训练。
如下图,展示了一个逻辑上的4层网络(T1
至 T4
)是如何做流水并行的。
4层网络被切分到2个计算设备上,其中 GPU0
上进行 T1
与 T2
的运算,GPU1
上进行 T3
与 T4
的计算。
GPU0
上完成前两层的计算后,它的输出被当作 GPU1
的输入,继续进行后两层的计算。
8.2.4 混合并行
网络的训练中,也可以将多种并行策略混用。
以 GPT-3 为例,以下是它训练时的设备并行方案:它首先被分为 64 个阶段,进行流水并行。每个阶段都运行在 6 台 DGX-A100 主机上。在6台主机之间,进行的是数据并行训练;每台主机有 8 张 GPU 显卡,同一台机器上的8张 GPU 显卡之间是进行模型并行训练。