Weak-Mamba-UNet 论文学习笔记

一、总结

这篇文献是关于一种名为Weak-Mamba-UNet的新型弱监督学习(WSL)框架,它结合了卷积神经网络(CNN)、视觉变换器(ViT)和最新的视觉Mamba(VMamba)架构,用于基于涂鸦(scribble-based)的医学图像分割。

在阅读论文过程中又去重温了一下以上3个架构的原理及实现过程,推荐阅读(1)卷积神经网络(CNN)详细介绍及其原理详解-CSDN博客文章浏览阅读10w+次,点赞1.8k次,收藏7.6k次。本文详细介绍了卷积神经网络(CNN)的基础概念和工作原理,包括输入层、卷积层、池化层、全连接层和输出层的作用。通过举例和图解,阐述了CNN如何处理图像,提取特征,以及如何进行手写数字识别。此外,讨论了池化层的平移不变性和防止过拟合的重要性。 https://blog.csdn.net/IronmanJay/article/details/128689946
(2)ViT(Visual Transformer)最通俗易懂的讲解(有代码)-CSDN博客文章浏览阅读1.5k次,点赞18次,收藏33次。深入浅出,通俗易懂理解ViT(Vision Transformer)网络模型和代码。本文详细介绍了Google在ICLR上发布的VIT模型,它是首个在计算机视觉领域超越CNN和RNN的Transformer模型。文章重点阐述了VIT的结构,包括图像特征嵌入、Transformer编码器(含多头注意力机制)、MLP分类模块,以及模型的亮点和整体架构。_visual transformer https://blog.csdn.net/2301_77653781/article/details/142360725?fromshare=blogdetail&sharetype=blogdetail&sharerId=142360725&sharerefer=PC&sharesource=2201_76036122&sharefrom=from_link

1. 背景与动机:
   - 医学图像分割对于医疗图像分析和治疗规划至关重要。
   - UNet,因其对称的U形编码器-解码器架构和跳跃连接而成为基础的分割网络。
   - 深度学习方法的有效性往往依赖于大量准确标记的数据集,这在医学图像分析领域难以获得。

2. Weak-Mamba-UNet框架:
   - 该框架结合了三种不同的架构:基于CNN的UNet、基于Swin Transformer的SwinUNet和基于VMamba的Mamba-UNet。具体来说,UNet采用了一个具有3×3内核的2层CNN,并执行了4级下采样和上采样。swing - unet使用2个Swin Transformer模块,

### 关于Mamba论文的下载与阅读 #### Mamba论文的核心背景 Mamba是一种新型的序列建模方法,它结合了结构化状态空间模型(SSM)、高效算法设计以及现代神经网络的优势[^1]。该研究最初旨在解决传统Transformer在长上下文处理中的效率瓶颈问题,并提出了更为简洁和高效的架构。 #### 获取Mamba相关论文的方法 可以通过以下几种方式获取Mamba及其后续版本(如Mamba2)的研究资料: 1. **官方发布渠道** 大多数学术论文会上传至arXiv平台供公众免费访问。可以尝试在arXiv网站上搜索关键词“Mamba”或具体标题来找到PDF文件[^3]。 2. **会议官网资源** 如果论文被顶级会议接受(例如ICML 2024),通常可以在对应会议官网上查找到正式版文档链接[^3]。 3. **第三方学术搜索引擎** 使用Google Scholar或其他学术数据库输入精确名称检索也是常见手段之一。这些工具能够帮助定位不同版本或者扩展讨论的文章集合[^2]。 #### 推荐的阅读路径 对于初学者来说,建议按照如下顺序深入理解这一领域的发展脉络: - 开始前先了解基础知识:从介绍性博文入手学习基本概念框架[^1]; - 进阶阶段研读核心理论文章:重点掌握如何将Transformers视为特定类型的SSMs实现统一表述法; - 实践应用探索最新成果:关注实际工程改进案例比如Jamba项目展示两者融合优势实例[^2]; 以下是基于Python模拟简单加载并解析pdf内容的小例子: ```python import PyPDF2 def read_pdf(file_path): pdf_file = open(file_path,'rb') reader = PyPDF2.PdfReader(pdf_file) text="" for page_num in range(len(reader.pages)): page=reader.pages[page_num] text += page.extract_text() return text if __name__ == "__main__": file="example_paper.pdf" content=read_pdf(file) print(content[:500]) # 输出前500字符作为预览 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值