传统视觉模型在处理大规模或高分辨率图像时存在一定限制,为解决这个问题,研究者们就最近依旧火热的Mamba,提出了Mamba结合CNN的策略。
这种结合可以让Mamba在处理长序列数据时既能够捕捉到序列中的时间依赖关系,又能够利用CNN的局部特征提取能力来加速处理过程,实现计算效率与模型性能的双赢,因此被广泛应用于各大领域。
比如在医学图像分割领域的应用中,Weak-Mamba-UNet等网络架构通过结合两者优势,有效地解决了医学图像中复杂的结构和模式识别问题,准确率高达99.63%。
另外还有HC-Mamba、InsectMamba等,都是最新提出的效果nice的结合成果。为帮助大家快速了解并掌握前沿,我挑选并整理了2024新发表的9篇Mamba+CNN高质量工作,可参考的创新点都提炼好了,开源代码已附。
论文原文+开源代码需要的同学看文末
HC-MAMBA: VISION MAMBA WITH HYBRID CONVOLUTIONAL TECHNIQUES FOR MEDICAL IMAGE SEGMENTATION
方法:论文提出了新型医学图像分割模型HC-Mamba。HC-Mamba基于Mamba结合了多种为医学图像优化的卷积技术,包括扩张卷积和深度可分离卷积。这些技术的结合使得HC-Mamba能够在保持高性能的同时,以更低的计算成本处理大规模医学图像数据。
HC-Mamba模型在医学图像分割任务中表现出色,实验结果显示其具有高准确率(94.84%)、mIo