当CNN遇上Mamba,高性能与高效率通通拿下!

传统视觉模型在处理大规模或高分辨率图像时存在一定限制,为解决这个问题,研究者们就最近依旧火热的Mamba,提出了Mamba结合CNN的策略。

这种结合可以让Mamba在处理长序列数据时既能够捕捉到序列中的时间依赖关系,又能够利用CNN的局部特征提取能力来加速处理过程,实现计算效率与模型性能的双赢,因此被广泛应用于各大领域。

比如在医学图像分割领域的应用中,Weak-Mamba-UNet等网络架构通过结合两者优势,有效地解决了医学图像中复杂的结构和模式识别问题,准确率高达99.63%。

另外还有HC-Mamba、InsectMamba等,都是最新提出的效果nice的结合成果。为帮助大家快速了解并掌握前沿,我挑选并整理了2024新发表的9篇Mamba+CNN高质量工作,可参考的创新点都提炼好了,开源代码已附。

论文原文+开源代码需要的同学看文末

HC-MAMBA: VISION MAMBA WITH HYBRID CONVOLUTIONAL TECHNIQUES FOR MEDICAL IMAGE SEGMENTATION

方法:论文提出了新型医学图像分割模型HC-Mamba。HC-Mamba基于Mamba结合了多种为医学图像优化的卷积技术,包括扩张卷积和深度可分离卷积。这些技术的结合使得HC-Mamba能够在保持高性能的同时,以更低的计算成本处理大规模医学图像数据。

HC-Mamba模型在医学图像分割任务中表现出色,实验结果显示其具有高准确率(94.84%)、mIo

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值