YOLOV8改进:CVPR2023:加入EfficientViT主干:具级联组注意力的访存高效ViT

该博客介绍了如何改进YOLOv8的第一个版本,采用EfficientViT作为主干网络,通过优化内存管理和引入级联群组注意力模块,提高模型效率和性能。实验结果显示,EfficientViT在速度和准确性上超越了现有高效模型,如MobileNetV3和MobileViT。
摘要由CSDN通过智能技术生成

目录

以YOLOv8的第一个版本进行改进

1.步骤一

2.将task.py文件中的parse_model函数替换为如下内容:

3.将task.py文件中的def _forward_once函数替换为如下代码

4.在trainer.py的118行添加如下代码

5.yaml文件


视觉变压器由于其高模型能力而取得了巨大的成功。然而,它们卓越的性能伴随着沉重的计算成本,这使得它们不适合实时应用。在这篇论文中,我们提出了一个高速视觉变压器家族,名为EfficientViT。我们发现现有的变压器模型的速度通常受到内存低效操作的限制,特别是在MHSA中的张量重塑和单元函数。因此,我们设计了一种具有三明治布局的新构建块,即在高效FFN层之间使用单个内存绑定的MHSA,从而提高了内存效率,同时增强了信道通信。此外,我们发现注意图在头部之间具有很高的相似性,从而导致计算冗余。为了解决这个问题,我们提出了一个级联的群体注意模块,以不同的完整特征分割来馈送注意头,不仅节省了计算成本,而且提高了注意多样性。综合实验表明,高效vit优于现有的高效模型,在速度和精度之间取得了良好的平衡。例如,我们的EfficientViT-M5在准确率上比MobileNetV3-Large高出1.9%,而在Nvidia V100 GPU和Intel Xeon CPU上的吞吐量分别高出40.4%和45.2%。与最近的高效型号MobileViT-XXS相比,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2025年程序设计

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值