进阶课3——神经网络

1.定义与分类

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。它由大量的节点(或神经元)相互关联而成,每个节点代表一种特定的输出函数(或称为运算),称为激励函数。每两个节点的连接都代表该信号在传输中所占的比重,称为权重。网络的输出由于激励函数和权重的不同而不同,是对于某种函数的逼近或是对映射关系的近似描述。

2.人工神经网络的基本结构

神经网络模型的基本结构通常包括以下三个主要组成部分:

  1. 输入层:这是神经网络的起点,负责接收外部输入的信息。
  2. 隐藏层:这些是神经网络的核心部分,通过它们,神经网络可以对输入信息进行非线性转换和处理。每个隐藏层都会对输入数据进行计算,并将结果传递给下一层。
  3. 输出层:这是神经网络的终点,负责输出神经网络处理后的结果。

3.不同种类的神经网络及应用场景

神经网络根据中间功能层的不同分为不同的神经网络,主要有以下三种:

  1. 全连接神经网络(FNN):每一层是全连接层,即每一层的每个神经元与上一层所有神经元都有连接。全连接层作为输出层有分类和数值预测的功能,也经常用于卷积神经网络。
  2. 卷积神经网络(CNN):包含卷积计算且具有深度结构的前馈神经网络。卷积层相当于滤镜,将图片进行分块,对每一块进行特征处理,从而提取特征。池化层则通过对提取的高维特征进行降维。全连接层将空间排列的特征化成一维的向量。
  3. 循环神经网络(RNN):中间层的输出作为输入和下一个样本数据一起作为输入,也叫循环层。具有记忆样本之间相关联系的能力,常用于文本填充、时间序列、语音识别等序列数据。

此外,神经网络根据学习方式的不同还可以分为前馈神经网络模型、BP神经网络模型和自组织映射(SOM)网络模型等。这些神经网络模型在人工智能领域都有广泛的应用。

3.1卷积神经网络

3.2循环神经网络 

3.3全连接神经网络

4.神经网络的应用场景

神经网络的应用场景非常广泛,以下列举了一些主要的应用场景:

  1. 语音识别:神经网络可以用于语音识别,包括语音转文字、语音翻译等。通过训练神经网络,可以使其学习如何将语音信号转换为文本或翻译成其他语言。
  2. 计算机视觉:神经网络在计算机视觉领域也有广泛应用,例如图像识别、目标检测、人脸识别等。通过训练神经网络,可以使其学习如何从图像中提取有用的信息并进行分类或检测特定目标。
  3. 自然语言处理:神经网络可以用于自然语言处理,例如文本分类、情感分析、机器翻译等。通过训练神经网络,可以使其学习如何理解和处理自然语言文本,从而进行文本分析和机器翻译等任务。
  4. 控制与决策:神经网络可以用于控制和决策,例如在机器人学、无人驾驶等领域中。通过训练神经网络,可以使其学习如何根据传感器输入和其他信息做出决策,控制机器人的行为和运动。
  5. 医学应用:神经网络可以应用于医学领域,例如医学图像处理、疾病诊断等。通过训练神经网络,可以使其学习如何从医学图像中提取有用信息,辅助医生进行疾病诊断和治疗方案的制定。
  6. 推荐系统:神经网络可以用于推荐系统,例如在电商、音乐、视频等领域中。通过训练神经网络,可以使其学习用户的兴趣和行为习惯,从而为用户推荐相关的商品或内容。

神经网络的应用场景非常广泛,这里以一个具体的例子——无人驾驶汽车来解释神经网络的应用。

无人驾驶汽车是一种智能汽车,它通过传感器、计算机视觉等技术实现自动驾驶。在这个过程中,神经网络被广泛应用于图像处理、目标检测、路径规划等任务中。

  • 在图像处理方面:无人驾驶汽车可以通过神经网络对摄像头采集的图像进行识别和分类,包括检测车辆、行人、交通标志等,以及识别车道线、交通信号灯等。这些信息可以帮助无人驾驶汽车在行驶过程中进行正确的决策和规划。
  • 目标检测和跟踪:通过对图像中的车辆、行人等目标进行检测和跟踪,无人驾驶汽车可以实时感知周围环境的变化,并做出相应的反应。例如,当检测到前方有行人时,无人驾驶汽车可以自动减速或避让,以避免碰撞。
  • 路径规划:通过对地图信息和车辆位置的感知,无人驾驶汽车可以通过神经网络计算出最优的行驶路径,并在行驶过程中进行实时更新和调整。

神经网络在无人驾驶汽车领域中的应用可以帮助车辆实现自动驾驶、感知周围环境、做出正确的决策和规划等,从而提高驾驶的安全性和舒适性。

基础课9——机器学习-CSDN博客文章浏览阅读97次。机器学习是一种数据分析技术,它使计算机能够像人类一样从经验中学习。机器学习算法使用计算方法直接从数据中获取信息,而不依赖于预定方程模型。当可用于学习的样本数量增加时,这些算法可以自适应提高性能。https://blog.csdn.net/2202_75469062/article/details/133934463?spm=1001.2014.3001.5502

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值