大语言模型(LLM)学习资料汇总
0x00 学习路径
本文分为四个章节,各章节的学习目标如下。请注意本文主要是面向工程界撰写,学术部分较少。
-
入门篇:
-
了解大语言模型的基础知识和常见术语。
-
学会使用编程语言访问 OpenAI API 等常见大语言模型接口。
-
提高篇:
-
了解机器学习、神经网络、NLP 的基础知识。
-
了解 Transformer 以及典型 Decoder-only 语言模型的基础结构和简单原理。
-
了解大语言模型发展历史,以及业界主流模型(含开源模型)进展。
-
应用篇:
-
可以在本地环境搭建开源模型的推理环境。
-
Prompt 工程。
-
使用已有框架(如Langchain)或自行开发,结合大语言模型结果,开发生产应用。
-
深入篇:(本文涉及少量资料)
-
掌握 Continue Pre-train、Fine-tuning 已有开源模型的能力。
-
掌握 Lora、QLora 等低资源高效模型训练的能力。
-
掌握大语言模型微调以及预训练数据准备的能力。
-
深入了解大模型背后的技术原理。
-
了解生产环境部署大模型的相关技术点。
读者可以根据自己需要选择对应的章节,如对大语言模型的原理不感兴趣,可只关注入门篇和应用篇。考虑到阅读背景,本文尽可能提供中文资料或有中文翻译的资料。
0x10 入门篇
在入门之前,请申请 OpenAI API,并具备良好的国际互联网访问条件。
-
大语言模型综述
-
大语言模型迄今为止最好的学术向中文综述。
-
中文版本:LLM_Survey_Chinese_0418.pdf
-
作为入门资料偏难,看不懂的部分可以等到后面章节再回头重看。
-
ChatGPT Prompt Engineering for Developers
-
虽然是 Prompt 工程,但是内容比较简单,适合入门者。
-
中英双语字幕:https://github.com/GitHubDaily/ChatGPT-Prompt-Engineering-for-Developers-in-Chinese
-
OpenAI Quickstart
-
OpenAI 官方 Quickstart 文档。
-
以及 API Reference
-
State of GPT:GPT 联合创始人做的演示,极好的总结了 GPT 的训练和应用。
-
视频:https://www.youtube.com/watch?v=bZQun8Y4L2A
-
PPT:https://karpathy.ai/stateofgpt.pdf
0x20 提高篇
-
清华大模型公开课:从NLP到大模型的综合课程,挑选感兴趣的了解。
-
深度学习:台湾大学李宏毅:台湾大学李宏毅,国语教程里最好的,讲的很清楚,也比较有趣。
-
Understanding large language models :理解大语言模型。
-
The Illustrated GPT-2 (Visualizing Transformer Language Models):图解 GPT2
-
中文翻译:https://zhuanlan.zhihu.com/p/139840113
-
InstructGPT: Training language models to follow instructions with human feedback:著名的 InstructGPT 论文。
-
另外一篇中文介绍:https://huggingface.co/blog/zh/rlhf
-
Huggingface NLP Course:NLP 入门课程
0x30 应用篇
-
Building Systems with the ChatGPT API
-
中文字幕:https://www.bilibili.com/video/BV1gj411X72B/
-
Langchain
-
中文字幕:https://www.bilibili.com/video/BV1Ku411x78m/
-
Langchain 是大语言模型最火的应用框架。即使不使用,也可以借鉴。
-
LangChain for LLM Application Development
-
GPT best practices:OpenAI 官方出的最佳实践。
-
openai-cookbook:OpenAI 官方 Cookbook。
-
Brex’s Prompt Engineering Guide:Prompt 工程简介
0x40 深入篇
-
Huggingface Transformer 文档:Transformer 官方文档
-
复杂推理:大语言模型的北极星能力 :略学术,解释大语言模型能力的来源。
-
GPT,GPT-2,GPT-3 论文精读:视频精读。
-
Building LLM applications for production:在生产环境中构建 LLM 应用。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓