根据已有的预训练大模型,精调出自己的私有大模型,是通用大模型走向企业应用和个人应用的重要方向。目前,大部分的通用大模型已经向大众开放,用于在其基础上调优训练出专有的AI模型。
例如:百度千帆大模型平台,该平台目前提供20多个基于大量的无标注数据,结合不同的训练方式训练出定制的预训练模型。在这些预训练模式的基础,借助千帆大模型平台,我们可以通过四个步骤,调优训练出专业大模型:数据准备、大模型训练、大模型管理、大模型服务。
其中,第一个步骤就是数据准备,而数据准备的开始就是建立自己的数据集。那么,如何建立大模型调优的数据集呢?根据千帆大模型平台,自己新建的数据集,根据调优训练的场景不同,分为6种数据类型:
一、Prompt+Response数据集
用于单轮或多轮的文本对话数据集,提问与回答一一对应。适用于模型精调的SFT大语言模型训练。例如:Prompt:你好! Reponse:你好,有什么可以帮助你吗?
向平台上传的数据集:支持jsonl、txt、csv、xlsx格式文件及包含上述文件类型的tar.gz/zip压缩包文件上传;单个jsonl、txt、csv、xlsx文件大小,或压缩包源文件大小,均不超过1G,所有文件数量不超过100;每一行代表一组数据,每组数据的Token数不超过32K。
备注:1、每一行代表一组数据,也就是一组数据之间有换行符\n。
2、一组数据的Token,也就是一组数据的文本分拆出的一个个的词、标点符号、数字或其他字符,一个token就是一个词、标点符号、数字或其它字符,Token数量就是这些分拆出的字词的数量,32K就是32000个字词,即每组数据最多3.2万个token。
需准备的数据集模板见平台的jsonl、txt、cvs、xlsx的模板,模板分为有标注的数据模板,单轮对话的数据模板,多轮对话的数据模板。
也可以向平台直接上传文本,大模型自动从文本中挖掘FAQ问答对,来新建数据集。不过,自己建立的FAQ问答数据集,肯定在质量上要好于大模型的自动挖掘。在条件允许的情况下,建议自己来构建问答对,以便使用优质的问答对来精调出高质量的模型。
二、纯文本数据集
特定领域的大规模无标注数据。适用于模型精调的Post-pretrain自监督预训练。
向平台上传的数据集:支持txt、pdf、doc、docx、jsonl格式文件及包含上述文件类型的tar.gz/zip压缩包文件上传。
其中,jsonl和docx的纯文本平台有模板对照。也就是直接向平台上传专业领域的纯文本的文件,预训练的大模型使用这些特定领域的数据进行模型训练,以使模型更好地适应这些领域的数据和任务。
三、Prompt+Chosen+Rejected数据集
单轮或多轮的文本对话数据,每个提示语存在对应的正负偏好回答。适用于模型精调的DPO直接偏好优化。
这类数据支持:支持jsonl格式文件及包含上述文件类型的tar.gz/zip压缩包文件上传;单个jsonl文件大小,或压缩包源文件大小,均不超过1G,所有文件数量不超过100;每一行代表一组数据,每组数据的Token数不超过32K。
jsonl格式:有标志的单轮对话,例子如下:
[{“user”:“hello”,“chosen”:“hi nice to meet you”,“rejected”:“leave me alone”}]
jsonl格式:有标志的多轮对话,例子如下:
[ {“user”:“生成一个关于人工智能的标题吧。”,
“assistant”:“好的,给您生成一些标题:1) 人工智能的未来与挑战; 2) 机器学习在现代生活中的应用; 3) 从AI发展历程看未来发展趋势。”},
{“user”:“可以再给我一些具体的例子吗?”,
“assistant”:“当然,人工智能正在各个行业带来深远影响。以下是一些具体的例子:\n1. ** 医疗保健: ** AI用于医学影像分析, 帮助医生快速诊断疾病。 它还可以预测疾病风险, 个性化治疗方案, 并改善医疗保健的效率和精确度。\n2. ** 金融服务: ** 人工智能被用于制定风险模型, 预测市场走势, 进行高频交易, 以及提供智能投资建议。\n3. ** 制造业: ** 自动化和智能机器人改变了生产线, 提高了生产效率和产品质量。 AI还用于预测维护, 减少设备损坏和停机时间。\n4. ** 教育: ** AI个性化学习, 根据学生的学习风格和进度制定课程。 它还能提供定制化的教学资源和智能辅导。\n5. ** 交通运输: ** 自动驾驶汽车利用人工智能技术, 提高了道路安全, 并在未来可能改变整个交通系统。\n这些是人工智能在各个领域带来革命性变化的一些例子, 它们正在改变我们的生活方式, 提高效率, 并为未来开辟新的可能性。” },
{“user”:“会导致这些行业大量失业么?”,
“chosen”:“是的”,
“rejected”:“不是的”} ]
四、Prompt+多Response排序数据集
用于单轮或多轮的文本对话数据集,单个提问对应多个已排序的回答。适用于模型精调的RLHF奖励模型训练。举例子如下:
Prompt | Response | |
你好 | 1 | 你好,有什么可以帮你吗 |
2 | 你好,有什么问题吗 |
数据集的要求,与第一种的Prompt+Response有一些相似,不过,response里面是二维列表,代表多response回答。
五、Prompt集
用于单轮或多轮的文本对话数据集,仅含提问,不含回答。适用于模型精调的RLHF强化学习训练。
prompt数据集:支持jsonl、txt、csv、xlsx格式文件及包含上述文件类型的tar.gz/zip压缩包文件上传;单个jsonl、txt、csv、xlsx文件大小,或压缩包源文件大小,均不超过1G,所有文件数量不超过100;每一行代表一组数据,每组数据的Token数不超过2K。
这种数据集的样式如下所示,只有prompt,没有response回答。
六、Prompt+图片
文生图对话数据,文本提问与图片回答一一对应。适用于模型精调的SFT文生图大模型训练。
这类数据集:支持jpg、png、bmp、jpeg格式文件及包含上述文件类型的tar.gz/zip压缩包文件上传;单张jpg、png、bmp、jpeg图片大小限制在14M以内,同时压缩包源文件大小不超过1G,所有文件数量不超过100;图片规格标准见平台说明。
总之,以上是千帆大模型平台使用通用大模型进行调优预训练的第一步——数据准备,只有准备高质量的训练数据,后续才能使用它对大模型进行定向调优,从而训练出适合特定领域的专长模型,例如作文打分模型。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓