在本地运行LLM的6种方法

商业人工智能和大型语言模型(LLM)有一个很大的缺点:隐私!在处理敏感或专有数据时,我们无法从这些工具中受益。

这使我们了解如何在本地运营私有 LLM。开源模型提供了一种解决方案,但它们也有其自身的一系列挑战和好处。

和我一起探索 ChatGPT 的本地替代品,您可以在自己的计算机上运行它。

设定期望

开源非常广泛,有数千种可用的模型,从像 Meta 这样的大型组织提供的模型到个人爱好者开发的模型不等。然而,运行它们会带来一系列挑战:

  • 它们可能需要强大的硬件:充足的内存,可能还需要一个 GPU
  • 虽然开源模型正在改进,但它们通常无法与 ChatGPT 等更完善的产品的功能相匹配,后者受益于大型工程师团队的支持。
  • 并非所有型号都可以用于商业用途。

正如谷歌泄露的一份文件所暗示的那样,开源和闭源模型之间的差距正在缩小。

在这里插入图片描述

1.Hugging Face and Transformers

Hugging Face 是机器学习和 AI 的 Docker Hub 等价物,提供了大量开源模型。幸运的是,Hugging Face 会定期对模型进行基准测试,并提供排行榜以帮助选择可用的最佳模型。

Hugging Face 还提供了 transformers,这是一个 Python 库,可以简化在本地运行 LLM。以下示例使用该库运行较旧的 GPT-2 microsoft/DialoGPT 中型模型。在第一次运行时,变形金刚将下载模型,您可以与它进行五次交互。该脚本还需要安装 PyTorch。

from transformers importAutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# source: https://huggingface.co/microsoft/DialoGPT-medium# Let's chat for 5 lines
for step in range(5):
    # encode the new user input, add the eos_token and return a tensor in Pytorch
    new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids    # generated a response while limiting the total chat history to 1000 tokens, 
    chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)    # pretty print last output tokens from bot
    print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))

Transformers优点:

  • 自动模型下载
  • 可用的代码片段
  • 实验和学习的理想选择

Transformers缺点:

  • 需要对 ML 和 NLP 有扎实的理解
  • 编码和配置技能是必要的

2. LangChain

我们可以在本地运行 LLM 的另一种方法是使用 LangChain。LangChain 是一个用于构建 AI 应用程序的 Python 框架。它提供了抽象和中间件,用于在其支持的模型之一之上开发 AI 应用程序。例如,以下代码向 microsoft/DialoGPT 中型模型提出一个问题:

from Langchain.LLMs.huggingface_pipeline import HuggingFacePipeline

hf = HuggingFacePipeline.from_model_id(
    model_id="microsoft/DialoGPT-medium", task="text-generation", pipeline_kwargs={"max_new_tokens": 200, "pad_token_id": 50256},
)
from langchain.prompts import PromptTemplatetemplate = """Question: {question}Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)chain = prompt | hfquestion = "What is electroencephalography?"print(chain.invoke({"question": question}))

LangChain的优点:

  • 更轻松的模型管理
  • 用于 AI 应用程序开发的有用实用程序

LangChain缺点:

  • 限速,与变形金刚相同
  • 您仍必须对应用程序的逻辑进行编码或创建合适的 UI。

3. Llama.cpp

Llama.cpp 是一个基于 C 和 C++ 的 LLM 推理引擎,针对 Apple 芯片进行了优化,并运行 Meta 的 Llama2 模型。

克隆存储库并构建项目后,我们可以使用以下命令运行模型:

$ ./main -m /path/to/model-file.gguf -p “Hi,there!”

Llama.cpp优点:

  • 比基于 Python 的解决方案具有更高的性能
  • 在适度的硬件上支持 Llama 7B 等大型模型
  • 提供绑定以使用其他语言构建 AI 应用程序,同时通过 Llama.cpp 运行推理。

Llama.cpp缺点:

  • 有限的模型支持
  • 需要工具构建

4.Llamafile

Llamafile 由 Mozilla 开发,为运行 LLM 提供了一种用户友好的替代方案。 Llamafile 以其可移植性和创建单文件可执行文件的能力而闻名。

一旦我们下载了 llamafile 和任何 GGUF 格式的模型,我们就可以启动本地浏览器会话:

$ ./llamafile -m /path/to/model.gguf

Llamafile 优点:

  • 与 Llama.cpp 相同的速度优势
  • 您可以生成嵌入了模型的单个可执行文件

Llamafile 缺点:

  • 该项目仍处于早期阶段
  • 并非所有模型都受支持,只有 Llama.cpp 支持的模型。

5.Ollama

Ollama 是 Llama.cpp 和 Llamafile 的更用户友好的替代品。下载在计算机上安装服务的可执行文件。安装后,打开终端并运行:

$ Ollama Run llama2

Ollama 将下载模型并开始交互式会话。

Ollama优点:

  • 易于安装和使用。
  • 可以运行骆驼和骆马模型。
  • 它真的很快。

Ollama 缺点:

  • 提供有限的模型库。
  • 自行管理模型,不能复用自己的模型。
  • 运行 LLM 的不可调选项。
  • 暂无 Windows 版本。

6. GPT4ALL

GPT4ALL 是一款易于使用的桌面应用程序,具有直观的 GUI。它支持本地模型运行,并通过 API 密钥提供与 OpenAI 的连接。它以其处理本地文档上下文的能力而著称,从而确保了隐私。

在这里插入图片描述

优点:

  • 具有友好用户界面的精美替代品
  • 支持一系列精选模型

缺点:

  • 型号选择有限
  • 某些型号有商业使用限制

结论

选择正确的工具在本地运行 LLM 取决于您的需求和专业知识。从用户友好的应用程序(如 GPT4ALL)到更多技术选项(如 Llama.cpp 和基于 Python 的解决方案),环境提供了多种选择。开源模型正在迎头赶上,提供了对数据和隐私的更多控制。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值