1. 背景介绍
1.1 知识图谱与RAG的兴起
近年来,随着人工智能技术的飞速发展,知识图谱和检索增强生成 (RAG) 成为自然语言处理领域的热门话题。知识图谱以结构化的方式存储和组织知识,为机器提供了理解和推理世界信息的能力;而 RAG 则结合了预训练语言模型的生成能力和外部知识库的检索能力,能够生成更加准确、相关和可信的文本内容。
1.2 垂直领域知识图谱的需求
通用知识图谱虽然包含了大量的知识,但对于特定领域的任务,其覆盖范围和深度往往不足。垂直领域知识图谱专注于特定领域,例如医疗、金融、法律等,能够提供更精确、更专业的知识,从而更好地支持领域内的应用。
1.3 垂直领域知识图谱的优势
- 专业性: 垂直领域知识图谱包含特定领域的概念、实体、关系和属性,能够提供更专业的知识和洞察。
- 准确性: 垂直领域知识图谱的数据通常来自领域内的权威来源,保证了知识的准确性和可靠性。
- 深度性: 垂直领域知识图谱对特定领域的知识进行深入挖掘,能够提供更详细、更全面的信息。