1. 背景介绍
1.1 生成对抗网络(GAN)的兴起
近年来,生成对抗网络(Generative Adversarial Networks, GANs)作为一种强大的深度学习模型,在图像生成、文本生成、语音合成等领域取得了令人瞩目的成果。GANs 的核心思想是通过两个神经网络——生成器(Generator)和判别器(Discriminator)——之间的对抗训练,来学习数据的潜在分布,并生成与真实数据分布相似的样本。
1.2 隐私保护的必要性
然而,随着人工智能技术的快速发展,数据隐私问题日益凸显。在训练 GANs 时,如果使用包含敏感信息的真实数据,可能会导致隐私泄露的风险。例如,在医疗图像生成中,如果 GANs 模型学习了患者的病历信息,可能会被恶意攻击者利用,泄露患者的隐私。
1.3 差分隐私技术
为了解决 GANs 的隐私问题,差分隐私(Differential Privacy, DP)技术应运而生。DP 是一种强大的隐私保护技术,它通过向数据添加噪声,来保证查询结果的统计性质不因单个数据的改变而发生显著变化,从而保护个体数据的隐私。