从零开始大模型开发与微调:从零开始学习PyTorch 2.0
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,大模型(Large Models)在自然语言处理、计算机视觉等领域的应用取得了令人瞩目的成果。然而,大模型的研究和开发却面临着诸多挑战,其中之一就是如何高效地进行模型的开发和微调。
PyTorch 作为一款流行的深度学习框架,以其动态计算图和灵活的API设计,在学术界和工业界都得到了广泛的应用。PyTorch 2.0 的发布,更是为大模型的开发和微调带来了新的可能性。
1.2 研究现状
目前,大模型的研究主要集中在以下几个方面:
- 预训练模型:通过在海量数据上进行预训练,学习丰富的语言知识和视觉知识。
- 微调:在预训练模型的基础上,针对特定任务进行微调,以提升模型在特定任务上的性能。
- 模型压缩:通过模型剪枝、量化等方法,减小模型尺寸,提高模型推理速度。
- 模型部署:将训练好的模型部署到实际应用

订阅专栏 解锁全文
343

被折叠的 条评论
为什么被折叠?



