芳林新叶催陈叶:训练出你的简版生成式GPT
关键词:生成式GPT,预训练语言模型,Transformer,微调,参数高效,少样本学习
1. 背景介绍
1.1 问题的由来
近年来,生成式预训练语言模型(如GPT系列)在自然语言处理(NLP)领域取得了突破性进展。这些模型通过在大量文本语料上进行预训练,学习到了丰富的语言知识和内在规律,能够生成流畅、连贯的自然语言文本。然而,这些大型模型往往需要海量计算资源和大量标注数据,对于一些小型企业和个人开发者来说,难以获取和应用。
为了解决这一问题,本文将介绍如何训练一个简版生成式GPT模型,即通过参数高效和少样本学习的方法,在有限资源下实现类似GPT的生成能力。
1.2 研究现状
近年来,生成式预训练语言模型的研究主要集中在以下几个方面:
- 预训练目标:如何设计更有效的预训练目标,使模型学