地统计方法的基本原理
区域化变量
• 当一个变量呈现为空间分布时,就称之为区域化变量(regionalized variable
)。这种变量常常反映某种空间现象的特征,用区域化变量来描述的现象称之为区域化现象。
• 区域化变量,亦称区域化随机变量,G. Matheron(
1963
)将它定义为以空间点
x
的三个直角坐标为自变量的随机场 。
• 区域化变量具有两个最显著,而且也是最重要的特征,即随机性和结构性。
协方差函数
协方差函数的概念
区域化随机变量之间的差异,可以用空间协方差来表示。
•
在概率论中
,
随机向量
X
与Y的协方差被定义为


协方差函数的计算公式


变异函数
变异函数的概念
变异函数
,又称变差函数、变异矩,是地统计分析所特有的基本工具。


变异函数的性质
变异函数的计算公式
变异函数的参数
• 变异函数有4个非常重要的参数,即基台值(sill
)、变程(
range
)或称空间依赖范围( range of spatial dependence
) 、 块金值 ( nugget
) 或称区域不连续性值 (
localized discontinuity)和分维数(
fractal dimension
)。
•
前
3
个参数可以直接从变异函数图中得到。它们决定变异函数的形状与结构。
•
变异函数的形状反映自然现象空间分布结构或空间相关的类型,同时还能给出这种空间相关的范围。

• 当变异函数随着间隔距离h
的增大,从非零值达到一个相对稳定的常数时,该常数称为基台值C
0
+
C
。
•
当间隔距离
h
=0
时,
γ
(0)=
C
0
,该值称为块金值或块金方差(n
ugget variance
)。
•
基台值是系统或系统属性中最大的变异,变异函数达到基台值时的间隔距离a
称为变程。变程表示在
h
≥
a
以后,区域化变量
Z
(
x
)空间相关性消失。
•
块金值表示区域化变量在小于抽样尺度时非连续变异,由区域化变量的属性或测量误差决定。

变异函数的理论模型
地统计学将变异函数理论模型分为3大类:
•
第1类是有基台值模型,包括球状模型、指数模型、高斯模型、线性有基台值模型和纯块金效应模型;
•
第2类是无基台值模型,包括幂函数模型、线性无基台值模型、抛物线模型;
•
第3类是孔穴效应模型。






