地统计分析方法(变异函数)

地统计方法的基本原理

区域化变量

• 当一个变量呈现为空间分布时,就称之为区域化变量(regionalized variable )。这种变量常常反映某种空间现象的特征,用区域化变量来描述的现象称之为区域化现象。
• 区域化变量,亦称区域化随机变量,G. Matheron( 1963 )将它定义为以空间点 x 的三个直角坐标为自变量的随机场 。
• 区域化变量具有两个最显著,而且也是最重要的特征,即随机性和结构性。

协方差函数

协方差函数的概念

区域化随机变量之间的差异,可以用空间协方差来表示。

在概率论中 , 随机向量 X Y的协方差被定义为

协方差函数的计算公式

变异函数

变异函数的概念

变异函数 ,又称变差函数、变异矩,是地统计分析所特有的基本工具。

变异函数的性质

变异函数的计算公式

变异函数的参数

• 变异函数有4个非常重要的参数,即基台值(sill )、变程( range )或称空间依赖范围( range of spatial dependence ) 、 块金值 ( nugget ) 或称区域不连续性值 ( localized discontinuity)和分维数( fractal dimension )。
3 个参数可以直接从变异函数图中得到。它们决定变异函数的形状与结构。
变异函数的形状反映自然现象空间分布结构或空间相关的类型,同时还能给出这种空间相关的范围。
• 当变异函数随着间隔距离h 的增大,从非零值达到一个相对稳定的常数时,该常数称为基台值C 0 + C
当间隔距离 h =0 时, γ (0)= C 0 ,该值称为块金值或块金方差(n ugget variance )。
基台值是系统或系统属性中最大的变异,变异函数达到基台值时的间隔距离a 称为变程。变程表示在 h a 以后,区域化变量 Z ( x )空间相关性消失。
块金值表示区域化变量在小于抽样尺度时非连续变异,由区域化变量的属性或测量误差决定。

变异函数的理论模型

地统计学将变异函数理论模型分为3大类:
第1类是有基台值模型,包括球状模型、指数模型、高斯模型、线性有基台值模型和纯块金效应模型;
第2类是无基台值模型,包括幂函数模型、线性无基台值模型、抛物线模型;
第3类是孔穴效应模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值