淘宝“猜你喜欢”数据挖掘:基于API构建个性化推荐引擎

以下是基于淘宝 API 构建个性化推荐引擎来挖掘 “猜你喜欢” 数据的详细步骤及示例代码:

实现思路

  1. 淘宝 API 接入:从淘宝平台获取必要的 API 权限,使用 API 拉取用户的历史行为数据,如浏览记录、购买记录等。
  2. 数据预处理:对获取到的原始数据进行清洗、转换和特征提取,以便后续分析。
  3. 构建推荐算法:根据处理后的数据,使用合适的推荐算法(如协同过滤、基于内容的推荐等)生成个性化推荐列表。
  4. 结果展示:将推荐结果展示给用户。

具体步骤

1. 淘宝 API 接入

首先要在淘宝平台创建应用,获取 appKey 和 appSecret,并完成授权。以下是使用 Python 调用淘宝 API 获取用户购买记录的示例代码:

import top.api
import json

# 设置 API 配置
appkey = 'your_appkey'
secret = 'your_appsecret'
req = top.api.TbkOrderGetRequest()
req.set_app_info(top.appinfo(appkey, secret))

# 设置请求参数
req.start_time = '2024-01-01 00:00:00'
req.end_time = '2024-12-31 23:59:59'
req.page_no = 1
req.page_size = 20

try:
    resp = req.getResponse()
    print(json.dumps(resp, indent=2, ensure_ascii=False))
except Exception as e:
    print(f"请求出错: {e}")
2. 数据预处理

对获取到的用户行为数据进行清洗和特征提取。以下是一个简单的 Python 示例,用于处理用户购买记录数据:

import pandas as pd

# 假设 resp 是从 API 获取的响应数据
data = resp['tbk_order_get_response']['results']['n_tbk_order']
df = pd.DataFrame(data)

# 清洗数据,去除不必要的列
columns_to_keep = ['num_iid', 'item_title', 'pay_price']
df = df[columns_to_keep]

# 处理缺失值
df = df.dropna()

# 提取商品特征
# 这里可以根据商品标题进行分词、提取关键词等操作
3. 构建推荐算法

使用协同过滤算法进行推荐。以下是一个简单的基于用户的协同过滤示例:

from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# 构建用户 - 商品矩阵
user_item_matrix = df.pivot_table(index='user_id', columns='num_iid', values='pay_price', fill_value=0)

# 计算用户之间的相似度
user_similarity = cosine_similarity(user_item_matrix)

# 为指定用户生成推荐
target_user = 'user_id_1'
target_user_index = user_item_matrix.index.get_loc(target_user)
similar_users = user_similarity[target_user_index].argsort()[::-1][1:11]  # 找到最相似的 10 个用户

# 找到这些相似用户购买过但目标用户未购买的商品
recommended_items = []
for similar_user_index in similar_users:
    similar_user = user_item_matrix.index[similar_user_index]
    similar_user_items = user_item_matrix.loc[similar_user][user_item_matrix.loc[target_user] == 0]
    recommended_items.extend(similar_user_items[similar_user_items > 0].index)

# 去除重复项
recommended_items = list(set(recommended_items))
4. 结果展示

将推荐结果展示给用户。如果是在小程序或网页应用中,可以将推荐的商品信息展示在界面上。以下是一个简单的 Python Flask 示例,用于将推荐结果以 JSON 格式返回:

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/recommendations/<user_id>', methods=['GET'])
def get_recommendations(user_id):
    # 这里调用前面的推荐算法生成推荐结果
    # 假设 recommended_items 是推荐的商品 ID 列表
    recommended_items = []  # 替换为实际的推荐结果
    return jsonify({'recommended_items': recommended_items})

if __name__ == '__main__':
    app.run(debug=True)
    

 

注意事项

  • 要在淘宝平台完成应用的授权与配置,确保 API 请求合法。
  • 处理好 API 请求的错误和异常情况,如网络错误、权限不足等。
  • 推荐算法可以根据实际情况进行优化和改进,如使用深度学习模型等。

通过以上步骤,你可以基于淘宝 API 构建一个简单的个性化推荐引擎,实现 “猜你喜欢” 的数据挖掘功能。

好的,以下是一个简单的Python爬虫示例代码,用于爬取淘宝喜欢的商品信息: ```python import requests from bs4 import BeautifulSoup # 设置请求头部信息,模拟浏览器请求 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} # 构造个人推荐页面的 URL url = "https://i.taobao.com/my_taobao/api/ajax_user_guess_you_like.do" # 发送请求并获取 HTML 源码 response = requests.get(url, headers=headers) html = response.text # 解析 HTML 源码,提取推荐商品的 ID soup = BeautifulSoup(html, 'html.parser') ids = soup.select('.item-pic a') id_list = [] for id in ids: item_id = id['data-nid'] if item_id not in id_list: id_list.append(item_id) # 构造推荐商品的详细信息页面的 URL detail_url = "https://item.taobao.com/item.htm?id=" # 发送请求并获取推荐商品的详细信息 for id in id_list: response = requests.get(detail_url + id, headers=headers) html = response.text # 解析 HTML 源码,提取推荐商品的详细信息 soup = BeautifulSoup(html, 'html.parser') title = soup.select('.tb-main-title')[0].text.strip() price = soup.select('.tb-rmb-num')[0].text.strip() print("商品名:", title) print("价格:", price) ``` 这段代码可以爬取淘宝喜欢的商品信息,包括商品名和价格,并输出到控制台中。注意,在使用该代码时需要设置请求头部信息,避免被反爬虫机制封禁。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值