以下是基于淘宝 API 构建个性化推荐引擎来挖掘 “猜你喜欢” 数据的详细步骤及示例代码:
实现思路
- 淘宝 API 接入:从淘宝平台获取必要的 API 权限,使用 API 拉取用户的历史行为数据,如浏览记录、购买记录等。
- 数据预处理:对获取到的原始数据进行清洗、转换和特征提取,以便后续分析。
- 构建推荐算法:根据处理后的数据,使用合适的推荐算法(如协同过滤、基于内容的推荐等)生成个性化推荐列表。
- 结果展示:将推荐结果展示给用户。
具体步骤
1. 淘宝 API 接入
首先要在淘宝平台创建应用,获取 appKey
和 appSecret
,并完成授权。以下是使用 Python 调用淘宝 API 获取用户购买记录的示例代码:
import top.api
import json
# 设置 API 配置
appkey = 'your_appkey'
secret = 'your_appsecret'
req = top.api.TbkOrderGetRequest()
req.set_app_info(top.appinfo(appkey, secret))
# 设置请求参数
req.start_time = '2024-01-01 00:00:00'
req.end_time = '2024-12-31 23:59:59'
req.page_no = 1
req.page_size = 20
try:
resp = req.getResponse()
print(json.dumps(resp, indent=2, ensure_ascii=False))
except Exception as e:
print(f"请求出错: {e}")
2. 数据预处理
对获取到的用户行为数据进行清洗和特征提取。以下是一个简单的 Python 示例,用于处理用户购买记录数据:
import pandas as pd
# 假设 resp 是从 API 获取的响应数据
data = resp['tbk_order_get_response']['results']['n_tbk_order']
df = pd.DataFrame(data)
# 清洗数据,去除不必要的列
columns_to_keep = ['num_iid', 'item_title', 'pay_price']
df = df[columns_to_keep]
# 处理缺失值
df = df.dropna()
# 提取商品特征
# 这里可以根据商品标题进行分词、提取关键词等操作
3. 构建推荐算法
使用协同过滤算法进行推荐。以下是一个简单的基于用户的协同过滤示例:
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# 构建用户 - 商品矩阵
user_item_matrix = df.pivot_table(index='user_id', columns='num_iid', values='pay_price', fill_value=0)
# 计算用户之间的相似度
user_similarity = cosine_similarity(user_item_matrix)
# 为指定用户生成推荐
target_user = 'user_id_1'
target_user_index = user_item_matrix.index.get_loc(target_user)
similar_users = user_similarity[target_user_index].argsort()[::-1][1:11] # 找到最相似的 10 个用户
# 找到这些相似用户购买过但目标用户未购买的商品
recommended_items = []
for similar_user_index in similar_users:
similar_user = user_item_matrix.index[similar_user_index]
similar_user_items = user_item_matrix.loc[similar_user][user_item_matrix.loc[target_user] == 0]
recommended_items.extend(similar_user_items[similar_user_items > 0].index)
# 去除重复项
recommended_items = list(set(recommended_items))
4. 结果展示
将推荐结果展示给用户。如果是在小程序或网页应用中,可以将推荐的商品信息展示在界面上。以下是一个简单的 Python Flask 示例,用于将推荐结果以 JSON 格式返回:
from flask import Flask, jsonify
app = Flask(__name__)
@app.route('/recommendations/<user_id>', methods=['GET'])
def get_recommendations(user_id):
# 这里调用前面的推荐算法生成推荐结果
# 假设 recommended_items 是推荐的商品 ID 列表
recommended_items = [] # 替换为实际的推荐结果
return jsonify({'recommended_items': recommended_items})
if __name__ == '__main__':
app.run(debug=True)
注意事项
- 要在淘宝平台完成应用的授权与配置,确保 API 请求合法。
- 处理好 API 请求的错误和异常情况,如网络错误、权限不足等。
- 推荐算法可以根据实际情况进行优化和改进,如使用深度学习模型等。
通过以上步骤,你可以基于淘宝 API 构建一个简单的个性化推荐引擎,实现 “猜你喜欢” 的数据挖掘功能。