基于时间序列分解(信号处理)的深度学习预测有意义嘛?信号分解方法在工程中有什么应用?

文章探讨了基于时间序列分解的深度学习预测在非平稳功率时间序列(如风电和光伏功率)中的应用。信号分解技术能减少序列波动并提取特征,通过时域和频域分解方法,如迭代算法、模型优化、小波变换等,将序列分解为子模态,再用深度学习模型进行预测。这种方法在机械故障诊断中也有应用,例如通过信号分解提取设备的健康状态信息,尤其是在处理非平稳振动信号时更为重要。
摘要由CSDN通过智能技术生成

基于时间序列分解(信号处理)的深度学习预测有意义嘛?

以非平稳功率时间序列为例进行说明,比如风电功率时间序列和光伏功率时间序列等。

在非平稳功率时间序列的预测研究中,信号分解技术主要是通过对序列进行时域分解或频域分解,以减小功率序列的随机波动性,并在一定程度上抑制各模态的相互干扰,进而表现出各个模态所特有的序列特征,最终达到序列有规可循。利用信号分解技术进行功率预测的主要思路为:

首先选择适当的处理方式,将原始功率时间序列分解为各模态子序列;然后,对各模态子序列建立单独的时序外推、人工智能或深度学习预测模型进行预测;最后,重组各子模态的预测结果获得最终的功率预测值。模型建立过程中,结合不同误差修正方法和优化算法,使得预测结果最优。

根据信号分解的特点,可将信号分解方法分为:时域分解和频域分解两种方法。时域分解技术是指信号在时域完成分解和特征提取。根据分解过程所采用的数学原理,可将时域分解技术分为迭代算法的时域分解模型优化算法的时域分解两种方式。同时,在实际工程中可以以子模态复杂度作为特征值,合并具有相似复杂度的模态分量,从而降低实际建模数量。

频域分解技术主要包含基于基函数的频域分解技术和基于频谱参数的分解技术。前者主要是通过基函数设定频段划分原则,后者则是根据频谱所具有的带宽和中心频率等特征信息进行分解。并且,在上述两种频域分解过程中,均可以根据各个模态分量的频率特征或序列复杂性特征,重构具有相似特征的子模态分量。

信号分解方法在工程中有什么应用?

以工业中机械故障诊断为例,通过信号分解可以抑制机械振动信号中的环境噪声和无关成分干扰,从而有效提取故障特征,其他领域也类似。

在机械设备运行过程中,设备振动响应通常包含丰富的设备健康状态信息。由于机械振动易于测量和分析,基于振动信号处理的设备状态监测得到了广泛应用。傅里叶变换是现今最常用的信号处理方法,它通过将信号投影到一系列相互正交的正弦基函数上来获取信号在频率域的全局信息。对于频域特征与时间无关的平稳信号,傅里叶变换能够得到具有明确物理意义的信号频谱。但是,当机械系统运行过程中的动力学参数发生变化或者运行工况发生改变时,系统振动响应会出现非平稳特性(如时变频率特征)。对于非平稳振动信号,更多的是关注信号的瞬时频率特征,对此傅里叶变换无法满足信号处理需求。此外,实际机械系统往往同时受到多种复杂激励,因此信号包含许多复杂的子信号分量而其中的某些特征分量与设备运行状态密切相关。例如,当齿轮发生故障时,其信号中齿轮啮合频率附近的边带分量的幅值会显著增大。但是,信号中的故障特征分量尤其是早期微弱故障特征极易被噪声和其他无关信号分量淹没,导致设备故障不能被及时发现。因此,利用信号分解方法将振动信号分解为一系列具有明确物理意义的子信号分量,进而从中提取故障特征分量,还是很有意义的。

目前的信号分解方法大体分为三类:时域分解方法、频域滤波方法以及时频域重构方法。

时域分解方法法直接在时域提取或重构信号分量,这些方法又是通过具体的迭代算法或者模型优化算法来实现信号分解。迭代分解算法包括:经验模态分解,总体经验模态分解,局部均值分解,本征时间尺度分解,迭代滤波分解,自适应局部迭代滤波分解,希尔伯特分解等。模型优化算法分解包括原子分解等。原子分解的基本原理是通过优化算法将信号表示为一系列最优参数化波形的线性叠加形式。参数化波形可以有效刻画信号局部特征,因此被称为原子,所有可能的参数化波形组成的函数库称为字典。由于原子字典的过完备性,相比于传统正交基函数展开方法(如傅里叶变换),原子分解能够更加灵活地表征任意复杂的信号。例如匹配追踪,基追踪,稀疏时频分析,非线性调频分量分解等。

频域滤波方法:自然界中许多信号的分量都具有独立的频率范围,因此许多方法通过滤波器在频域分离这些信号分量。比如离散小波变换,经验小波变换,变分模态分解,迭代广义解调等。

时频域重构方法:时频分析方法能够将一维时域信号映射到二维时频域,从而得到信号的时间-频率联合分布函数,时频分布能够有效表征非平稳信号的时变调频特征,比如非线性模式分解等。

mbd.pub/o/GeBENHAGEN

擅长现代信号处理(改进小波分析系列,改进变分模态分解,改进经验小波变换,改进辛几何模态分解等等),改进机器学习,改进深度学习,机械故障诊断,改进时间序列分析(金融信号,心电信号,振动信号等)

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值