矩阵运算、行列式几何意义与线性无关性

1. 向量和线性相关性:

如果矩阵A是一个方阵,那么他的列向量组线性相关的充要条件为|A|=0

如何理解?首先需要明确线性相关的概念。对于一个n维向量组a1,a2,。。。am,若存在不全为的数k1,k2,。。。km,使得k1a1+k2a2+。。。+kmam=0,则说明向量组线性相关,否则称为线性无关。

证明向量组线性相关,相当于我们能否找到一组不全为0的数使得等式成立。我们将k作为未知数,那么,这就变成了以A=(a1,a2,。。。,am)为系数矩阵的齐次线性方程组是否有非零解。根据“线性方程组的解”相关知识我们知道,R(A)<m时线性相关,即A为降秩矩阵。若A为方阵,说明|A|=0

线性相关相当于“降维”,向量组中至少有一个向量可以由其他向量线性表示。线性无关则表示“满秩”,向量组可以张成一个m维空间



2. 矩阵和行列式,行列式和线性无关性

 ①行列式是针对方阵的

②行列式=0,意味着空间压缩,比如本来三维的,压缩成了二维的平面(本来不在同一维度上的东西压缩到了同一维度),线性相关

②行列式><0(不等于0),意味着空间未压缩,维度不变,线性无关

如果仅限于线性代数,行列式为0对应的矩阵(设为A,有n行n列)有以下性质:

1、A不可逆 (或者说不满秩,也可称为奇异矩阵);

2、A的列(行)向量组线性相关

3、A的秩小于n,即r(A)<n;

4、齐次方程AX=0有非零解;

5、A有特征值0;

6、A不能表示成初等矩阵的乘积;

7、A的等价标准形不是单位矩阵

行列式指矩阵(线性方程组系数)的行列式,如果不为零,则表明矩阵满秩,这样,对于方程组的矩阵式y=Ax,无论y取啥数组(向量),必有唯一解,就是说,必然能找到唯一的一个数组(向量)x,使等式成立。

如果|A|=0,则说明A不满秩,当y取某数组(向量)时,方程组就可能有两种情况,一种是无解,一种是有无穷多解

满秩是啥意思?就是矩阵里的列向量(有人也喜欢扯行向量)都是线性无关的,每一个列向量都可以担当起一个全空间坐标系的起作用的坐标轴。比如一个三阶矩阵,有三个列向量,如果满秩,这三个向量就能形成一个立体(3维)的坐标轴体系(满秩,|A|≠0),而不是三者都趴在一个“平面”里(秩就为2,不满3了,|A|=0)。

A满秩,为啥必然就有唯一解呢?满秩,就是坐标轴系完整,整个空间里任选一个点位(相当于y取值),都有一个坐标值可以标定(有唯一对应的x)。如果不满秩,就如3维空间里,这三个坐标轴居然趴在一个平面里,这时,落在这个平面上的点(若y取值在这个平面上),则还是有解的,而且坐标轴富裕(三个轴表达一个平面),就可以有各种数字组合,就有无穷多解。但若y的取值不在这个平面内,坐标轴再多,还是无解。比如三个坐标轴都平躺在地面上,高度就没法标了。你取一个点在地面上一毫米,这个不满秩的坐标轴也标示不出来(无解)啊。

不过,对于这类三坐标,不要理解为必然是“直角坐标”系,就是三个坐标轴垂直(线代里叫正交)。在线代里谈论的基(坐标轴)通常不是正交的,但它们若要满秩,就必然不在一个子空间里,比如在一个秩2的子空间(平面)。坐标轴可以各种斜,但是,只要没有三个都落到一个(斜)平面上,这个斜(或正)的平面就是一个秩为2的子空间,这三个基(列向量,坐标轴)就是线性无关的,就是满秩的,就是能标定空间里任何一个位置的,就是必有唯一解的。

行列式的几何意义:

1.二阶行列式是两个向量为边围成的四边形的面积。若|A|=0,说明两个向量共线,有底边,没高度,就面积为零了。正负值区分了面积的方向。

2.三阶行列式是三个向量为棱边的六面体(立体)体体积,|A|=0,说明至少是三线共面,有底面积,没有高度了,或者三者共线,底面积和高度都没了。正值表示高度方向与底面积方向一致,负值表示二者相背。

3. 线性方程组和行阶梯形矩阵:

不妨这样,将列向量组排成矩阵,然后用初等列变换化为梯形(左下梯形)。在这个过程中,我们消去了一些向量,也就是说,这些向量是可以用其他向量线性表出的。从而剩下的向量无法互相线性表出。

而我们每次只剔除了一个向量,因为所谓“剔除”,就是把某列向量全变为0,而我们每次只对一列作列变换。而每次剔除的向量都是可以由其他向量表出的。当我们无法剔除向量时,不仅说明当前已经没有可以被其他向量线性表出的向量了,也说明我们刚刚剔除了最后一个可以被其他向量线性表出的向量。从而,得到了极大线性无关向量组

4. 向量空间和基:


一个向量组的线性组合构成一个线性空间,我们称“该向量组张成了这个线性空间”,这个线性空间就是该向量组的向量空间

一个向量组的极大无关组不是唯一的,但是它能最精简地保留原向量组的秩,也就是向量空间的维数极大无关组可以作为其向量空间的一组基,也就是某种斜坐标系

一个非零向量能张成一条直线(一维);两个非零向量可能张成一个平面(二维),也有可能共线(即线性相关),只能张成一维;三个非零向量可能张成三维、二维或一维,以此类推。

如果一个向量可以被别的向量线性表示,那么它被称为“冗余”的,它在向量组张成向量空间时起不到任何价值,不能增加维度。显然,一个向量至多增加一个维度。

我们对矩阵进行初等行变换变为阶梯型的时候,就是把那些能被别的向量表示的“冗余”、“无价值”的向量进行“剔除”,剩下的极大无关组就是那些“骨干”、“真材实货”。

当然,“冗余”也是相对的。比如说存在这种情况:a和b能表示c,a和c也同样能表示b,b和c也同样能表示a. 在这种情况下,剔除a, b, c其中任意一个向量都可以。


这里有一堆向量 和 他的极大无关组

这堆向量能构建出的最高维度的空间,其实就是极大无关组能弄出的空间

作者:JASON
链接:https://www.zhihu.com/question/574576075/answer/2815463671

作者:无产者
链接:https://www.zhihu.com/question/505349726/answer/2267327249

作者:David KZ
链接:https://www.zhihu.com/question/51884467/answer/536660172

作者:tetradecane
链接:https://www.zhihu.com/question/51884467/answer/536858632

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值