【泊位调度】基于遗传算法实现泊位调度问题,7条船,2个泊位,无需等待Matlab实现

以下是一个简单的Matlab实现,使用遗传算法解决泊位调度问题,其中有7条船和2个泊位,无需等待。

ini

复制
% 遗传算法参数设置
populationSize = 50;
numGenerations = 100;
mutationRate = 0.02;

% 泊位和船只数量
numBoats = 7;
numBerths = 2;

% 随机生成初始种群
population = randi([1 numBerths], populationSize, numBoats);

for generation = 1:numGenerations
% 计算适应度
fitness = calculateFitness(population);

% 选择父代
parents = selection(population, fitness);

% 交叉繁殖
offspring = crossover(parents, populationSize);

% 变异
offspring = mutation(offspring, mutationRate, numBerths);

% 更新种群
population = offspring;

end

% 最终的最佳解
bestSolution = population(1,:);
disp(‘最佳泊位调度解:’);
disp(bestSolution);

% 计算适应度函数(示例)
function fitness = calculateFitness(population)
% 这里可以根据实际情况定义适应度函数,例如最大化泊位利用率等
fitness = sum(population == 1, 2); % 以泊位1的数量为适应度
end

% 选择父代(锦标赛选择)
function parents = selection(population, fitness)
[~, idx] = max(randi(size(population, 1), 2, size(population, 1)), [], 1);
parents = population(idx,:);
end

% 交叉繁殖(单点交叉)
function offspring = crossover(parents, populationSize)
crossoverPoint = randi(size(parents, 2));
parents = parents(randperm(size(parents, 1)), 😃;
offspring = [parents(1:populationSize/2,:); parents(populationSize/2+1:end,:)];
offspring = [offspring(:,1:crossoverPoint), offspring(:,crossoverPoint+1:end)];
end

% 变异
function offspring = mutation(offspring, mutationRate, numBerths)
mask = rand(size(offspring)) < mutationRate;
offspring(mask) = randi(numBerths, sum(mask(😃), 1);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值