以下是一个简单的Matlab实现,使用遗传算法解决泊位调度问题,其中有7条船和2个泊位,无需等待。
ini
复制
% 遗传算法参数设置
populationSize = 50;
numGenerations = 100;
mutationRate = 0.02;
% 泊位和船只数量
numBoats = 7;
numBerths = 2;
% 随机生成初始种群
population = randi([1 numBerths], populationSize, numBoats);
for generation = 1:numGenerations
% 计算适应度
fitness = calculateFitness(population);
% 选择父代
parents = selection(population, fitness);
% 交叉繁殖
offspring = crossover(parents, populationSize);
% 变异
offspring = mutation(offspring, mutationRate, numBerths);
% 更新种群
population = offspring;
end
% 最终的最佳解
bestSolution = population(1,:);
disp(‘最佳泊位调度解:’);
disp(bestSolution);
% 计算适应度函数(示例)
function fitness = calculateFitness(population)
% 这里可以根据实际情况定义适应度函数,例如最大化泊位利用率等
fitness = sum(population == 1, 2); % 以泊位1的数量为适应度
end
% 选择父代(锦标赛选择)
function parents = selection(population, fitness)
[~, idx] = max(randi(size(population, 1), 2, size(population, 1)), [], 1);
parents = population(idx,:);
end
% 交叉繁殖(单点交叉)
function offspring = crossover(parents, populationSize)
crossoverPoint = randi(size(parents, 2));
parents = parents(randperm(size(parents, 1)), 😃;
offspring = [parents(1:populationSize/2,:); parents(populationSize/2+1:end,:)];
offspring = [offspring(:,1:crossoverPoint), offspring(:,crossoverPoint+1:end)];
end
% 变异
function offspring = mutation(offspring, mutationRate, numBerths)
mask = rand(size(offspring)) < mutationRate;
offspring(mask) = randi(numBerths, sum(mask(😃), 1);
end