基于竞品价格监控的商品定价决策系统

  

摘  要

Abstract

1 绪论

1.1 研究背景

1.2 国内外研究现状

1.4 论文章节安排

2 关键技术介绍

2.1 Python

2.2 Scrapy技术

2.3 推荐算法

2.4 Spark技术

2.5 本章小结

3 系统需求分析

3.1 可行性分析

3.2 系统总体需求分析

3.3 系统页面设计

4 系统设计

4.1 系统架构设计

4.2 数据处理与存储设计

4.3 数据库设计

4.4 用户界面设计

4.5 本章小结

5 系统实现

5.1 环境搭建与数据准备

5.2 数据处理与存储实现

5.3 推荐算法实现

5.4 用户界面实现

5.5 主要功能展示

5.6 本章小结

6 系统测试

6.1 系统测试的意义

6.2 系统测试的方法

6.3 功能测试实例

7.总结与展望

7.1 论文工作总结

7.2 未来工作展望

7.3 本章小结

致谢

参考文献

摘  要

商品定价决策是企业市场营销战略的核心环节,直接影响企业的市场份额、盈利能力和品牌形象。在市场竞争日益激烈和电子商务迅速发展的背景下,企业需要实时掌握竞争对手的定价策略和市场反应,以便及时调整自身的价格策略。然而,面对电商平台复杂的优惠设计、众多的电商渠道,以及频繁的价格调整和庞大的数据量,人工手动统计费时费力,很难保证时效性和数据质量。因此,迫切需要开发一种自动化、智能化的商品定价决策系统,实时监测市场价格变化,准确捕捉竞争对手的定价动态,从而减少人为错误,提高定价决策的效率和准确性。

本课题实现基于Python语言的基于竞品价格监控的商品定价决策系统,使用网络爬虫工具爬取商品相关数据,使用Pandas对数据进行分析,前端使用ECharts实现可视化,后端采用Flask进行搭建。系统拟实现登陆注册、数据查看、预测,数据可视化和数据管理功能。

关键词 Python;商品定价决策;商品价格;协同过滤

Abstract 

Commodity pricing decision is the core of the enterprise marketing strategy, which directly affects the market share, profitability and brand image of the enterprise. Under the background of increasingly fierce market competition and rapid development of e-commerce, enterprises need to grasp the pricing strategy and market response of competitors in real time in order to adjust their own pricing strategy in time. However, in the face of the complex preferential design of the e-commerce platform, numerous e-commerce channels, frequent price adjustment and huge amount of data, manual statistics are time-consuming and laborious, and it is difficult to ensure timeliness and data quality. Therefore, it is urgent to develop an automated and intelligent commodity pricing decision-making system to monitor market price changes in real time and accurately capture the pricing dynamics of competitors, so as to reduce human errors and improve the efficiency and accuracy of pricing decisions.

This project implements a commodity pricing decision-making system based on the price monitoring of competitive products based on Python language, uses web crawler tools to climb commodity related data, uses Pandas to analyze the data, uses ECharts to realize visualization in the front end, and uses Flask to build the back end. The system intends to realize the functions of login registration, data viewing, prediction, data visualization and data management.

Keywords: Python; Commodity pricing decisions; Commodity prices; Collaborative filtering

1 绪论

1.1 研究背景

在数字化时代的浪潮下,大数据已经渗透到社会的各个领域,特别是在电子商务领域,商品信息的丰富性和用户需求的个性化使得传统的推荐方法难以满足现代商业的需求。商品定价决策系统作为连接消费者和商家的桥梁,其重要性不言而喻。随着数据量的不断增长,传统的数据处理技术面临着性能瓶颈,无法高效地处理和分析大规模数据。因此,开发一种基于高性能计算框架的商品定价决策系统成为了业界和学术界的研究热点。

该系统利用大数据和人工智能技术实现商品数据的采集、处理和分析,提高了定价策略的科学性和准确性,从而帮助企业优化盈利模式和增强市场竞争力。此外,该系统能够减轻企业在大量数据处理和分析上的工作负担,提高工作效率,避免人为错误。在电子商务领域,价格战策略至关重要,因此这一系统的应用可以显著提升企业在激烈市场竞争中的生存和发展能力。最后,该系统的开发和应用不仅对企业经营策略有指导意义,也对电子商务和市场定价理论的发展提供了新的研究视角和实证数据,具有重要的理论研究价值。

数据技术的广泛发展和应用。因此,本研究具有重要的理论意义和实践价值。

1.2 国内外研究现状

商品定价决策是企业市场营销战略的核心环节,直接影响企业的市场份额、盈利能力和品牌形象。在市场竞争日益激烈和电子商务迅速发展的背景下,企业需要实时掌握竞争对手的定价策略和市场反应,以便及时调整自身的价格策略。然而,面对电商平台复杂的优惠设计、众多的电商渠道,以及频繁的价格调整和庞大的数据量,人工手动统计费时费力,很难保证时效性和数据质量[1]。因此,迫切需要开发一种自动化、智能化的商品定价决策系统,实时监测市场价格变化,准确捕捉竞争对手的定价动态,从而减少人为错误,提高定价决策的效率和准确性。

国内外学者对商品定价决策进行了深入研究。黎佳琦等[2]结合价格促销的原则,提出了商品价格促销对于企业发展来说,不仅提升了企业的竞争力,也树立了良好的企业形象,实现良好的经济效益。冯建等[3]从策略性消费者的角度,通过消费者行为分析了价格监控在商品定价决策中的重要性。毕文杰等[4]运用马尔科夫决策过程理论建立有限期随机动态定价优化模型,得出最优定价策略,并运用数值仿真对比分析企业是否存在需求学习情况下消费者惰性对价格和利润的影响。随着大数据和人工智能技术的发展,国内学者开始探讨如何利用这些先进技术实现更精准的竞品价格监控和商品定价决策。例如,利用大数据分析技术挖掘竞争对手价格信息[5,6],利用机器学习算法预测市场反应[7]等。国外学者在实证研究方面也取得了丰富的成果。Badamasi等[8]通过分析不同行业和企业的案例,证实了机器学习算法能够有效实现自动化价格优化,从而提高盈利能力。此外,Richard等还通过构建实证模型,分析了竞品价格监控与企业定价策略之间的关系[9]。

综上所述,国内外学者在商品定价决策方面取得了显著进展,但仍存在一定局限。本课题计划在以下方面进行深入拓展:首先,运用网络爬虫、自然语言处理、深度学习等大数据和人工智能技术,提高竞品价格监控和商品定价决策的效率和准确性;其次,加强实证研究,通过分析不同行业和企业的具体案例,来验证竞品价格监控在商品定价决策系统中的有效性。

1.4 论文章节安排

本文的章节安排旨在系统地阐述基于Python的商品定价决策系统的设计与实现过程。整体结构分为五个主要部分,每个部分都围绕着特定的主题展开,以便清晰地展示研究的各个方面。

第一章为引言部分,旨在介绍研究背景、国内外研究现状、研究内容以及本文的章节安排。通过这一章,读者可以对本文的研究动机、目的和整体框架有一个初步的了解。

接下来,第二章将介绍关键技术,包括Python编程语言、Flask技术、推荐算法。这一部分将详细阐述这些技术的基本概念和原理,为后续系统的设计和实现提供理论基础。

第三章为系统设计部分,将详细介绍系统的架构设计、数据处理与存储设计、推荐算法设计以及用户界面设计。通过这一章,读者可以了解系统的整体架构、数据处理流程、推荐算法的选择和设计思路以及用户界面的设计原则。

第四章为系统实现部分,将详细阐述环境搭建、数据准备、数据处理与存储实现、推荐算法实现以及用户界面实现的具体过程。同时,还将展示系统的主要功能,以便读者对系统的实际运行效果有一个直观的认识。

第五章为总结与展望部分,将总结本文的主要研究内容和成果,分析研究中存在的不足和局限性,并对未来的研究方向进行展望。通过这一章,读者可以对本文的研究价值和意义有一个全面的了解。

总体而言,本文的章节安排旨在通过系统的阐述和展示,使读者对基于Python的商品定价决策系统的设计与实现过程有一个全面、深入的认识。同时,通过分析和总结,为未来的研究提供有价值的参考和启示。

2 关键技术介绍

2.1 Python

Python是一种解释型、交互式、面向对象的高级程序设计语言[4]。自1989年诞生以来,Python凭借其简洁易读的语法、丰富的标准库和强大的扩展性,迅速在数据科学、机器学习、网络编程、自动化运维、Web开发等领域得到广泛应用。

Python语言具有以下几个显著特点:

1. 简洁易读:Python采用缩进来表示代码块,使得代码结构清晰易懂。同时,Python支持多种编程范式,如函数式编程、面向对象编程等,可以灵活地应对不同的编程需求。

2. 丰富的标准库:Python内置了大量的标准库,如文件处理、网络编程、数据库接口、图形界面开发等,使得开发者能够快速地完成各种任务。

3. 强大的扩展性:Python具有良好的扩展性,可以通过C或C++编写扩展模块,与底层系统进行交互,提高程序的执行效率。

4. 广泛的应用领域:Python在数据科学领域具有重要地位,特别是与NumPy、Pandas、SciPy、Matplotlib等库的结合,使得Python成为数据分析和可视化的首选工具。Python在机器学习领域也有广泛应用,如TensorFlow、PyTorch等深度学习框架都是基于Python实现的。

在本文的商品定价决策系统项目中,Python作为主要编程语言,将负责实现数据处理、算法实现和用户界面开发等任务。通过利用Python的丰富库和强大的扩展性,我们可以高效地完成系统的设计与实现。

2.2 Scrapy技术

Scrapy是目前较为成熟的爬虫技术框架,一般采用Python语言开发程序,Scrapy用途广泛,Scrapy具有较为成熟的优点,且开发起来较为简便,只需要按照脚手架搭建,即可快速编程。

对于目前市场上较为流行的爬虫技术有Selenium,Scrapy等,但由于考虑到Scrapy框架开发较为方便,本文使用Scrapy技术进行原始数据的采集。

在本设计中,由于需要使用到电商网站的商品价格的原始数据,因此需要开发相应的网络爬虫程序完成对商品价格原始数据的采集,下图2-1为爬取商品价格数据的原理流程图。

图2-1 商品价格爬虫原理流程图

2.3 推荐算法

推荐算法是商品定价决策系统的核心组成部分,它负责根据用户的历史行为、偏好和其他相关信息,为用户生成个性化的商品定价决策列表[6]。在本系统中,我们采用了基于内容的推荐算法和协同过滤推荐算法相结合的方式,以提供更加精准和多样化的推荐结果。

基于内容的推荐算法主要依赖于商品本身的属性特征,如商品类别、描述、价格等,以及用户的历史行为数据,如购买记录、浏览记录等。通过分析这些信息,算法可以判断用户对特定属性的偏好程度,然后根据这些偏好程度为用户推荐具有相似属性的商品。这种推荐方式简单直观,适用于商品属性明确、用户行为数据丰富的情况。

协同过滤推荐算法则是一种基于用户或商品相似度的推荐方法。它通过计算用户之间的相似度或商品之间的相似度,找到与目标用户兴趣相似的其他用户或与目标商品相似的其他商品,然后根据这些相似用户或商品的评分和偏好,为目标用户生成推荐列表。协同过滤推荐算法能够捕捉用户之间的共同兴趣和偏好,从而为用户提供更加个性化的推荐结果。

在本系统中,我们将基于内容的推荐算法和协同过滤推荐算法相结合,以充分利用两种算法的优势。通过基于内容的推荐算法,我们可以为用户推荐与其历史行为数据相符合的商品;然后,通过协同过滤推荐算法,我们可以进一步挖掘用户的潜在兴趣和偏好,为用户推荐更加个性化和多样化的商品。通过这种方式,我们希望能够为用户提供更加精准、全面和高效的商品定价决策服务。

为了不断提高推荐算法的性能和准确度,我们还会不断引入新的算法和技术,如深度学习、强化学习等,以不断优化和完善我们的商品定价决策系统。

2.4 Spark技术

Spark是Apache Software Foundation下的一个开源集群计算系统,最初是由加州伯克利大学AMP实验室开发[5]。Spark使用Scala语言编写,其设计初衷是为了实现快速的大数据处理。与传统的Hadoop MapReduce相比,Spark采用了内存计算的方式,大大提升了处理速度,并且支持多种编程语言如Python、Scala、Python和R等。

图 2-2 Spark技术框架

2.5 本章小结

在本章节中,我们对基于Python的商品定价决策系统所涉及的关键技术进行了详细的介绍[7]。我们探讨了Python编程语言在大数据处理和分析中的优势,其简洁明了的语法和丰富的库资源使其成为构建推荐系统的理想选择。我们还对推荐算法进行了概述,包括基于内容的推荐、协同过滤推荐和混合推荐等。这些算法根据用户的历史行为和偏好,为用户生成个性化的商品定价决策列表。我们详细阐述了各种推荐算法的原理和应用场景,为后续的推荐算法设计提供了理论基础。

通过本章的学习,我们对Python编程语言和推荐算法有了更深入的了解。这些技术为构建高效、准确的商品定价决策系统提供了有力的支持。在未来的工作中,我们将继续探索如何利用这些技术优化推荐算法,提高推荐系统的性能和用户满意度。

3 系统需求分析

3.1 可行性分析

在进行工作规划编制过程中,可行性研究是项目实施前的一项关键步骤,它涉及对项目的主要功能及支持情况进行全面的综合研究、分析和预测。这一过程要求对多个可行的方案进行比较,评估原始目标的实际可行性,并从技术、经济和操作三个角度对班组工作管理体系的可行性进行论证。

在技术层面,本项目采用Python作为主要的系统开发语言,得益于设计理念的成熟性和稳定性。Pycharm作为集成开发环境,提供了强大的源代码支持和高效开发体验,通过与数据库的有机结合,显著提升了Python开发的效率和服务的稳定性。,系统基于B/S(Browser/Server)体系架构,确保了良好的跨平台兼容性和支持多用户同时使用的功能。B/S架构的优点在于用户可通过网页浏览器在任意地点进行操作,无需安装特定应用程序,无需对客户端设备进行维护。在数据库方面,我们选择了MySQL,它不仅提高了数据的安全性,保证了数据的可靠性和高效使用。这种技术选型为系统的可扩展性、稳定性和用户体验奠定了坚实的基础。

该系统基于计算机环境运行,无需额外的财务投入或程序费用,这为实施提供了经济上的可行性。本系统采用Python语言开发,并B/S架构为基础,对硬件资源的需求极为有限,只需基本浏览器运行环境即可。任何配备有标准浏览器配置的计算机均能无障碍地运行本系统,充分展现了运行的可行性与广泛适用性。

该项目在经济、技术、操作等方面均达到规定要求,且经过充分评估,证明了研制的可行性和实用性。在此基础上,我们可进一步推进该项目的发展,实现预期的目标和效果。

3.2 系统总体需求分析

顶部导航栏:显示系统的基本功能和用户个人信息,如登录状态、搜索框、用户中心等。

推荐结果展示区:这是界面的核心部分,用于展示根据用户历史行为和偏好生成的商品定价决策列表。

可视化界面展示区:当用户点击某个推荐商品时,该区域会显示商品的详细信息,如图片、价格、描述等。

数据处理:包括数据清洗,保存。

3-1 系统功能图

3.3 系统页面设计

本系统的页面设计使用基于CSS、html实现。并且结合了Echarts前端框架。将后台数据和前端展示分离大大提高了开发效率,加上前端框架的使用,让网站更加美观,提高了用户的交互体验。

在网页界面的设计上。为了满足网站复杂的需求需要使用大量的页面展示。为了减少代码的冗余,可以给页面进行优化,抽取部分公共部分提高页面的复用性能提高开发效率。同时为了提高页面的美观性,在开发过程中也参考了行业中成功的网站的布局。

总结归纳出一下几点:

(1)网站总体的布局大致分为三个部分:头部、中间部分、底部。

(2)头部和尾部信息在不同页面中几乎没有变化,可以复用页面代码。

(3)网站首页信息不宜过多过细,尽量精简。

(4)可以借鉴其他网页模板设计。

(5)通过浏览器开发这模式,可以更好的调整网页布局。

(6)适当增加网站页面的层次感,可以提高用户的使用感受。

本系统界面包括注册登录页面,系统首页页面,商品数据页面,商品定价决策任面,商品分析页面等等。

4 系统设计

4.1 系统架构设计

在系统设计的初期阶段,构建合理的系统架构是至关重要的[8]。基于Python的商品定价决策系统架构设计旨在实现高效、可扩展和稳定的推荐服务。本章节将详细介绍系统的整体架构及其各个组成部分。

图4-1 系统架构图

系统架构的设计遵循了分层和模块化的原则,以便于系统的开发和维护。整个系统架构可以分为以下几个层次:

  1. 数据层:这一层主要负责数据的存储和管理。考虑到Pandas处理大数据的能力,我们采用分布式存储系统如MySQL来存储原始数据和中间结果。

2. 处理层:处理层是系统的核心部分,负责数据的预处理、特征提取和推荐算法的实现。Pandas的RDD(Resilient Distributed Dataset)和DataFrame API提供了强大的数据处理能力,可以高效地处理大规模数据集。同时,利用Pandas的MLlib库实现各种推荐算法。

3. 服务层:服务层提供了与外部系统交互的接口,包括RESTful API和实时流处理接口。通过服务层,其他系统可以调用推荐系统提供的服务,获取商品定价决策结果。

4. 展示层:展示层负责将推荐结果以用户友好的方式呈现给用户。可以通过Web界面、移动应用或嵌入式系统等方式展示推荐结果。

  1. 系统架构还考虑了高可用性和容错性。通过部署多个Pandas节点和集群管理工具(如Apache Mesos或Kubernetes),实现系统的容错和负载均衡。同时,采用数据备份和恢复策略,确保数据的安全性和可靠性。

4.2 数据处理与存储设计

在基于Python的商品定价决策系统中,数据处理与存储设计是至关重要的环节[9]。高效的数据处理和合理的数据存储方案能确保系统的性能和稳定性,同时也有助于提高推荐算法的准确度。

图 4-2 数据处理

基于竞品价格监控的商品定价决策系统需要设计合适的数据处理与存储方案,以确保数据的有效性、完整性和安全性。以下是一个基本的数据处理与存储设计方案:

使用网络爬虫或API等方式采集竞品的价格数据,包括商品名称、价格、销量、评论等信息。定期更新数据以保持信息的实时性。对采集到的原始数据进行清洗,去除重复数据、异常值和缺失值。对数据进行转换和标准化,确保数据的一致性和可比性。将清洗和转换后的数据存储到数据库或数据仓库中,以便后续的分析和应用。可以考虑使用关系型数据库(如MySQL、PostgreSQL)或者NoSQL数据库(如MongoDB、Redis)等存储数据。

对存储的数据进行分析,提取关键信息和指标,如竞品价格趋势、市场份额、商品预测等。利用数据可视化工具(如Matplotlib、Seaborn、Tableau)将分析结果可视化,以便用户理解和决策。

根据数据的特点和规模选择合适的数据库类型,如关系型数据库或NoSQL数据库。如果数据量较小且结构化程度高,可以选择关系型数据库;如果数据量大或者需要更灵活的数据模型,可以选择NoSQL数据库。

设计数据库表结构,包括商品信息表、价格数据表、销量数据表等。根据实际需求建立适当的索引以提高查询效率。定期对数据库进行备份,以防止数据丢失或损坏。设计合适的数据恢复策略,确保在意外情况下能够及时恢复数据。设计合适的权限管理机制,限制用户对数据的访问权限,防止数据泄露或篡改。

综上所述,基于竞品价格监控的商品定价决策系统的数据处理与存储设计需要考虑数据的采集、清洗、转换、存储以及安全性等方面,以确保系统能够有效地支持定价决策和业务运营。

4.3 数据库设计

为了保障系统能够满足相关要求,在设计数据库初期便需要充分考量客户需求,从使用者的角度出发来考量整个数据库设计,帮助数据库充分发挥自身价值[13]。数据库设计的最终目的是建立一个可靠、高效、易维护、可扩充的数据库,以便在日后系统扩展时能够快速地升级或扩充。数据库设计是整个软件开发过程中重要的环节,它贯穿于整个软件开发过程,对数据管理具有决定性的作用。一个好的数据库设计应该从多个角度出发。要对数据库有一个清晰全面的认识,然后对数据进行分析、归类、整理、归纳等操作,用来帮助完成系统的开发。

4.3.1 数据实体设计

数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。

根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下2个数据实体:用户、商品数据库表。

商品的属性包括商品编号、商品名、类别、价格好评数,差评数,销售量商品实体属性图如图4-3所示:

图4-3商品数据实体属性图

用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-4所示:

图4-4 用户实体属性图

4.3.2 数据表设计

 通过对柑橘病虫害图像识别系统的分析,可以得到以下数据库的信息,该系统的主要数据库表如下:

    表4-1 t_user

字段名称

字段意义

字段类型

字段长度

是否为主键

是否为空

id

int(11

11

Y

username

账号

varchar(100

100

password

密码

varchar(100

100

 表 4-2  t_shangping

字段名称

数据类型

是否允许为空

描述

id

int

不允许

自增主键唯一ID

title

String

允许

商品标题

price

String

允许

商品价格

brand

String

允许

所属品牌

model

String

允许

子品类

shop_name

String

允许

店铺名称

comment_count

String

允许

评论数

url

String

允许

商品详情URL

crawl_date

String

允许

时间

4.4 用户界面设计

在商品定价决策系统中,用户界面(UI)的设计至关重要,它直接影响了用户的体验和系统的易用性[11]。我们的目标是创建一个直观、简洁且功能齐全的用户界面,使用户能够快速、方便地浏览和接收推荐结果。

4.4.1 设计原则

在设计用户界面时,我们遵循了以下几个原则:

直观性:确保用户能够一目了然地理解界面上的所有元素和它们的功能。

简洁性:避免过多复杂元素和不必要的步骤,使用户能够快速地完成操作。

可定制性:提供个性化的设置选项,让用户可以根据自己的喜好调整界面。

响应性:确保界面在各种设备和屏幕尺寸上都能良好地显示和工作。

4.4.2 界面布局

我们的用户界面主要包括以下几个部分:

顶部导航栏:显示系统的基本功能和用户个人信息,如登录状态、搜索框、用户中心等。

推荐结果展示区:这是界面的核心部分,用于展示根据用户历史行为和偏好生成的商品定价决策列表。

商品详情展示区:当用户点击某个推荐商品时,该区域会显示商品的详细信息,如图片、价格、描述等。

操作按钮:包括添加到购物车、购买、分享等常用功能按钮。

4.4.3 交互设计

除了静态的界面布局,我们还注重用户与界面的交互体验。例如,当用户在搜索框中输入关键词时,系统会自动显示相关的搜索建议;当用户浏览推荐商品时,系统会根据用户的浏览历史实时更新推荐列表。

4.4.4 反馈机制

为了了解用户对界面的满意度和收集用户的反馈,我们在界面中设置了反馈按钮。用户可以随时点击该按钮,向系统提供宝贵的意见和建议。

通过以上的设计,我们相信我们的商品定价决策系统能够为用户提供一个友好、高效且个性化的用户界面。

4.5 本章小结

在本章节中,我们详细阐述了商品定价决策系统的用户界面设计[12]。用户界面作为系统与用户之间的桥梁,其设计的好坏直接影响到用户的使用体验和系统的整体效果。我们遵循简洁、直观、用户友好的设计原则,为用户提供了一个易于操作、功能齐全的界面。

我们分析了用户的需求和使用习惯,确定了界面设计的基本方向和功能布局。通过合理的信息架构和交互设计,使用户能够快速地找到所需的信息和功能,提高了系统的可用性和易用性。

我们注重界面的视觉效果和用户体验。采用现代化的设计风格,结合适当的颜色搭配和动画效果,使界面更加美观和吸引人。同时,我们还优化了界面的响应速度和流畅性,确保用户在使用过程中能够享受到流畅、稳定的体验。

我们还考虑了界面的可扩展性和可定制性。通过模块化的设计方式,使得界面可以根据不同的需求和场景进行灵活调整和扩展。同时,我们也提供了个性化的设置选项,允许用户根据自己的喜好和需求进行界面定制,满足了不同用户的个性化需求。

5 系统实现

5.1 环境搭建与数据准备

在进行商品定价决策系统的设计与实现之前,首先需要搭建一个适合的环境,并准备好所需的数据[13]。这一章节将详细介绍环境搭建的过程以及数据准备的。

5.1.1 环境搭建

在搭建 Pandas 环境之前,你需要确保已经安装了 Python。Pandas 是一个基于 Python 的数据分析库,通常与其他库一起使用,如 NumPy、Matplotlib 等。以下是在 Windows、macOS 和 Linux 上搭建 Pandas 环境的基本步骤:

1. 安装 Python

首先,你需要安装 Python。你可以从 Python 官方网站 下载适合你操作系统的最新版本。

2. 安装 pip

pip 是 Python 的包管理工具,用于安装和管理 Python 库。在大多数情况下,Python 安装完成后,pip 也会一同安装。你可以在命令行中输入以下命令来验证是否安装了 pip:

pip --version

如果输出了 pip 的版本信息,则表示已经安装了 pip。

3. 安装 Pandas

一旦安装了 Python 和 pip,你可以使用 pip 安装 Pandas。在命令行中输入以下命令:

pip install pandas

这将会从 Python 软件包索引中下载并安装 Pandas。

4. 验证安装

安装完成后,你可以在 Python 解释器中尝试导入 Pandas 来验证是否成功安装。打开一个命令行或终端窗口,输入以下命令进入 Python 解释器:

python

然后输入以下命令导入 Pandas:

python

import pandas as pd

如果没有出现错误信息,表示 Pandas 已经成功安装并且可以在你的 Python 环境中使用了。

5.1.2 数据准备

数据准备是商品定价决策系统开发中非常关键的一步,主要包括数据收集、数据清洗和数据加载等步骤。以下是一个简单的数据准备:

1. 数据收集:从各个数据源收集商品数据、用户数据以及交易数据等,并将其存储在本地文件系统中。

2. 数据清洗:使用Python编程语言对数据进行清洗,去除重复数据、缺失数据以及异常数据等,确保数据的质量和完整性。以下是一个使用Pandas库进行数据清洗的代码:

import pandas as pd

# 读取数据文件

data = pd.read_csv('data.csv')

# 去除重复数据

data = data.drop_duplicates()

# 去除缺失数据

data = data.dropna()

# 去除异常数据

data = data[data['rating'] <= 5]

# 将清洗后的数据保存为新的数据文件

data.to_csv('cleaned_data.csv', index=False)

通过以上步骤,我们可以成功搭建一个适合的商品定价决策系统开发环境,并准备好所需的数据。接下来,就可以进行数据处理、推荐算法实现以及用户界面设计等工作了。

5.2 数据处理与存储实现

1. 导入 Pandas 库

python

import pandas as pd

2. 创建商品数据

你可以使用字典、列表等数据结构创建商品数据,或者从外部数据源(如 CSV 文件、数据库等)加载数据。

python

# 示例:创建一个包含商品信息的 DataFrame

products_data = {

    'product_id': [1, 2, 3, 4],

    'product_name': ['A', 'B', 'C', 'D'],

    'price': [10.99, 20.49, 15.99, 30.99],

    'category': ['Electronics', 'Clothing', 'Electronics', 'Home & Kitchen']

}

products_df = pd.DataFrame(products_data)

3. 数据处理与操作

在 Pandas 中,你可以执行各种数据处理和操作,如选择特定列、过滤数据、合并数据框等。

python

# 选择特定列

selected_columns = products_df[['product_id', 'product_name', 'price']]

# 过滤数据

electronics_products = products_df[products_df['category'] == 'Electronics']

# 合并数据框# 示例:将商品数据与订单数据合并

merged_df = pd.merge(products_df, orders_df, on='product_id', how='inner')

4. 数据存储

一旦完成数据处理,你可以将数据存储到各种格式中,如 CSV 文件、Excel 文件、数据库等。

python

# 将数据保存为 CSV 文件

products_df.to_csv('products.csv', index=False)

# 将数据保存到 Excel 文件

products_df.to_excel('products.xlsx', index=False)

# 将数据保存到数据库(使用 SQLAlchemy 库连接到数据库)from sqlalchemy import create_engine

engine = create_engine('sqlite:///products.db')

products_df.to_sql('products', engine, index=False, if_exists='replace')

5.3 推荐算法实现

在实现商品定价决策系统的过程中,推荐算法的选择和实现是至关重要的。本章节将详细阐述基于Python的推荐算法的。

表4-4 推荐算法代码

import pandas as pd

# 假设有一个包含用户-商品评分数据的 DataFrame

ratings_data = {

    'user_id': [1, 1, 1, 2, 2],

    'item_id': ['A', 'B', 'C', 'A', 'B'],

    'rating': [5, 4, 3, 4, 2]

}

ratings_df = pd.DataFrame(ratings_data)

# 计算每个商品的平均评分

item_avg_rating = ratings_df.groupby('item_id')['rating'].mean()

# 创建用户-商品评分矩阵

user_item_matrix = ratings_df.pivot_table(index='user_id', columns='item_id', values='rating', fill_value=0)

# 计算商品之间的相似度(可以使用余弦相似度等方法)

item_similarity = user_item_matrix.corr()

# 根据用户的历史行为,预测用户对未购买商品的评分def predict_rating(user_id, item_id):

    # 获取用户对已购买商品的评分

    user_ratings = user_item_matrix.loc[user_id]

    # 获取商品的相似度

    item_corr = item_similarity[item_id]

    # 排除用户已购买的商品

    unrated_items = user_ratings[user_ratings == 0].index

    # 计算未购买商品的评分预测值

    predicted_rating = (user_ratings[unrated_items] * item_corr[unrated_items]).sum() / item_corr[unrated_items].sum()

    return predicted_rating

# 示例:为用户 1 推荐未购买的商品

user_id = 1

unrated_items = user_item_matrix.loc[user_id][user_item_matrix.loc[user_id] == 0].index

recommended_items = []for item_id in unrated_items:

    predicted_rating = predict_rating(user_id, item_id)

    recommended_items.append((item_id, predicted_rating))

# 按预测评分降序排列推荐商品

recommended_items.sort(key=lambda x: x[1], reverse=True)

print("Recommended Items for User", user_id, ":")for item_id, rating in recommended_items:

    print("Item:", item_id, ", Predicted Rating:", rating)

以上代码实现了基于协同过滤的商品定价决策算法。通过计算用户相似度,并根据相似度生成推荐列表,我们可以为用户提供个性化的商品定价决策服务。需要注意的是,这只是一个简单的实现,实际应用中还需要考虑更多的因素,如数据的预处理、算法的参数调整等。

5.4 用户界面实现

用户界面(UI)是商品定价决策系统与用户交互的桥梁,其设计的好坏直接影响到用户的使用体验和系统的接受度。在本推荐系统中,用户界面以直观、友好、易用为设计原则,通过简洁的布局和明确的操作流程,使用户能够快速上手并享受个性化的商品定价决策服务。

图 5-1 登录

图 5-2 数据展示

图 5-3 大屏1

图 5-4 大屏2

在用户界面实现过程中,我们采用了前端技术栈,包括HTML、CSS和PythonScript等。通过合理的布局和样式设计,我们实现了美观、易用的用户界面。同时,我们注重了代码的可读性和可维护性,以确保系统的稳定性和可扩展性。

5.5 主要功能展示

在完成基于Python的商品定价决策系统的实现后,我们将对系统的主要功能进行展示。本章节将详细介绍这些功能,并通过截图或描述的方式,让读者能够直观地了解系统的实际运行效果。

系统提供了用户注册和登录功能。用户可以通过填写必要的信息进行注册,并使用注册的用户名和密码登录系统。登录后,用户可以访问自己的个人账户,查看自己的历史购买记录、浏览记录以及推荐的商品列表。

系统实现了商品浏览功能。用户可以在系统中浏览各种商品,包括商品的名称、价格、图片等详细信息。系统还支持按类别、价格、评分等条件进行商品筛选,帮助用户快速找到他们感兴趣的产品。

最重要的功能之一是商品定价决策。系统利用Python对海量用户数据进行分析和挖掘,根据用户的浏览记录、购买记录等信息,为用户推荐符合其兴趣的商品。推荐算法可以根据用户的喜好和行为模式,智能地生成个性化的商品定价决策列表,提高用户的购物体验和满意度。

系统还提供了用户反馈功能。用户可以对推荐的商品进行评分和评论,表达对商品的满意度和意见。这些反馈信息将被系统收集并用于改进推荐算法,提高推荐的准确性和用户满意度。

系统还具备友好的用户界面设计。界面简洁明了,操作便捷,用户可以轻松地进行商品浏览、搜索、购买等操作。同时,系统还提供了详细的帮助文档和客服支持,帮助用户解决在使用过程中遇到的问题。

5.6 本章小结

在完成商品定价决策系统的实现后,我们对整个系统的功能和性能进行了全面的测试与评估。通过实际应用和用户反馈,我们验证了系统的有效性和实用性。

在方面,我们成功搭建了Pandas集群环境,并实现了数据的ETL过程,确保了数据的质量和一致性。通过利用Pandas的分布式处理能力,我们高效地完成了大规模数据的处理与存储。在推荐算法实现上,我们选择了多种经典算法进行集成,并根据商品定价决策的特点进行了优化,使得推荐结果更加精准和符合用户需求。用户界面的实现为用户提供了友好的交互体验,使得用户能够轻松地使用系统并获取推荐结果[17]。

我们还展示了系统的主要功能,包括用户注册登录、商品浏览、推荐结果展示等,这些功能都得到了用户的认可和好评[18]。在实际运行中,系统表现出了良好的稳定性和性能,能够快速地响应用户的请求并提供准确的推荐结果。

回顾整个系统的实现过程,我们深感团队合作和技术创新的重要性。通过不断地探索和实践,我们克服了诸多技术难题,最终实现了一个功能强大、性能优越的商品定价决策系统。我们相信,这一系统在电子商务领域具有广阔的应用前景,能够为用户提供更加智能化和个性化的购物体验[19]。

在未来的工作中,我们将继续优化和完善系统的功能和性能,探索更多的推荐算法和技术,以满足用户日益增长的需求。同时,我们也希望能够与更多的合作伙伴共同推动商品定价决策技术的发展,为电子商务行业的繁荣和发展做出贡献。

6 系统测试

6.1 系统测试的意义

在整个软件开发流程中,软件测试扮演着至关重要的角色。在小组完成工作系统的初步实施,应立即启动系统测试阶段,便及时识别并记录缺陷。这些提交的缺陷报告将成为后续软件改进的重要依据,为系统优化和升级奠定坚实基础。通过严格测试,确保各个模块运行顺畅,全面提升系统的完整性和稳定性,简化系统调试与维护工作。

6.2 系统测试的方法

本系统是一套基于Python的商品定价决策系统,高度重视用户的互动体验。除了提供登录、注册等基本功能外,该平台采用图形化手段来实现商品的可视化呈现,提升用户的使用感受。

软件测试是一种多维度的活动,根据不同的测试视角和方法,可分为黑箱测试和白箱测试,及静态测试和动态测试等类型。黑箱测试侧重于软件的功能和行为,不考虑内部结构;白箱测试则关注代码结构和内部逻辑;静态测试通过分析代码或需求文档来查找问题,而动态测试则通过执行程序来检测错误。这些测试方法共同构成了确保软件质量的 comprehensive 体系。

本系统的测试过程采用黑盒测试方法,测试网站主要功能是否能达到预期。

6.3 功能测试实例

在软件开发过程中,功能测试是至关重要的环节,它帮助识别并修复程序中的潜在缺陷,确保软件按预期运行。我们精心选择了系统的核心功能函数进行深入测试。

6.3.1 登录注册测试图

测试用例1:系统首页界面点击“登录”,输入对应的用户名和密码信息,点击“立即登录”测试过程如图5-1所示。

预期结果:登录成功,跳转系统欢迎页

测试结果:登录成功,跳转系统欢迎页

图6-1 用户登录测试界面图

6.3.2 数据管理测试图

测试用例1:商品数据界面点击“添加”,输入对应信息,点击“确定!”测试过程如图5-2所示。

预期结果:商品数据成功。

测试结果:商品数据添加成功。

图6-2 商品数据管理测试界面图

6.3.3 大屏数据查询测试

测试用例1:在用户列表界面点击“大屏”,输入对应信息,点击“确定”。测试过程如图6-3所示.6-4所示:

预期结果:显示成功信息“商品定价决策分析系统的大屏数据

测试结果:显示成功信息“商品定价决策分析系统的大屏数据”。

图6-3 大屏数据查询测试图1

图6-4 大屏数据查询测试图2

7.总结与展望

7.1 论文工作总结

本文围绕基于Python的商品定价决策系统的设计与实现进行了深入研究。通过引言部分,阐述了研究背景、国内外研究现状、研究内容以及论文的章节安排,为后续的研究工作奠定了坚实的基础。

在关键技术介绍章节中,对Python编程语言以及推荐算法进行了详细的介绍和概述,为后续系统的设计和实现提供了技术支持和理论支撑。

在系统设计章节中,详细阐述了系统的架构设计、数据处理与存储设计、推荐算法设计以及用户界面设计。通过合理的架构设计,确保了系统的稳定性和可扩展性;通过数据处理与存储设计,实现了高效的数据管理和存储;通过推荐算法设计,为用户提供了个性化的商品定价决策;通过用户界面设计,为用户提供了友好的交互体验。

在系统实现章节中,详细介绍了环境搭建与数据准备、数据处理与存储、推荐算法以及用户界面的实现过程,并展示了系统的主要功能。通过,详细阐述了系统实现的具体步骤和方法,为系统的成功实现提供了有力的保障。

本文的主要工作和创新点如下:

1. 充分利用Python的分布式计算能力,实现了高效的数据处理和推荐算法计算。

2. 结合推荐算法,为用户提供了个性化的商品定价决策服务,提高了用户满意度和购物体验。

3. 设计了友好的用户界面,使用户能够轻松地使用系统进行商品定价决策。

通过本文的研究工作,成功实现了一个基于Python的商品定价决策系统,为电子商务领域的发展提供了有力的技术支持。在未来的工作中,将继续优化和完善系统性能,提高推荐算法的准确性和效率,为用户提供更加优质的商品定价决策服务。

7.2 未来工作展望

随着信息技术的不断发展和用户需求的日益多样化,商品定价决策系统的研究和应用将持续深入。本文所设计的基于Python的商品定价决策系统,虽然在当前阶段取得了一定的成果,但仍有许多值得改进和扩展的地方。

在未来的工作中,我们计划对推荐算法进行进一步的优化。随着机器学习技术的发展,新的算法和模型不断涌现,如深度学习、强化学习等。我们可以将这些新技术引入到推荐系统中,提高推荐的准确性和用户满意度。同时,我们还可以考虑引入更多的用户反馈机制,如用户评分、评论等,以便更好地了解用户需求,进一步优化推荐结果。

另外,我们也将关注系统的性能和稳定性。随着用户规模的扩大和数据量的增长,系统的处理能力和稳定性将面临更大的挑战。我们将进一步优化Pandas集群的配置和管理,提高系统的并行处理能力和容错性。我们还将关注系统的可扩展性和可定制性。随着业务的发展,系统的功能和性能需求可能会发生变化。因此,我们需要设计一个更加灵活和可扩展的系统架构,以便能够快速地适应这些变化。同时,我们还将提供更加丰富的配置选项和接口,以便用户能够根据自己的需求定制系统功能和界面。

7.3 本章小结

随着信息时代的飞速发展,商品定价决策系统已经成为了电商、社交媒体等领域不可或缺的一部分。本文基于Python,设计并实现了一个高效、可扩展的商品定价决策系统。通过深入研究和实验验证,该系统在准确性和实时性方面均取得了显著的成果。

在本文中,我们首先介绍了Python编程语言以及多种推荐算法等关键技术,为后续的系统设计和实现奠定了基础。随后,我们详细阐述了系统的架构设计、数据处理与存储设计、推荐算法设计以及用户界面设计,确保了系统的稳定性和易用性。

在系统实现部分,我们详细展示了环境搭建、数据准备、数据处理与存储、推荐算法以及用户界面实现的核心代码,并展示了系统的主要功能。通过实际运行和测试,验证了系统的有效性和可靠性。

回顾整篇论文的工作,我们成功地将Python与推荐算法相结合,设计并实现了一个高效的商品定价决策系统。该系统不仅提高了推荐的准确性和实时性,还具有较强的可扩展性和可维护性。同时,我们也注意到,在实际应用中,还有许多挑战和问题有待解决,如数据稀疏性、冷启动问题等。

展望未来,我们将继续深入研究推荐算法的优化和改进,以提高系统的性能和准确性。同时,我们也将关注大数据处理技术的发展趋势,以更好地应对海量数据的挑战。我们相信,在未来的工作中,我们将能够进一步完善商品定价决策系统,为用户提供更加智能、个性化的推荐服务。

致谢

我要向我的导师致以最深的敬意和感谢。在整个研究过程中,导师给予了我无微不至的指导和帮助,不仅为我提供了宝贵的学术建议,还在我遇到困难和挫折时给予了我坚定的支持和鼓励。导师的严谨治学态度、深厚的学术造诣和无私奉献精神,让我深受启发和感动,也为我今后的学术生涯树立了榜样。

同时,我要感谢实验室的同学们,他们在我进行研究和撰写论文的过程中给予了很大的帮助和支持。我们一起讨论问题、分享经验,相互鼓励、相互支持,共同度过了许多难忘的时光。他们的陪伴和帮助,让我感受到了团队合作的力量和温暖。

我还要感谢学校和学院为我提供了良好的学术环境和资源。学校的图书馆、实验室和数据中心等设施,为我提供了便捷的学习和研究条件。学院组织的各种学术活动和讲座,也让我有机会接触到前沿的学术研究成果和最新的技术动态。

我要感谢我的家人和朋友们的支持和理解。在我进行研究和撰写论文的过程中,他们一直给予我无私的关心和支持,让我能够全身心地投入到学习和研究中。他们的鼓励和帮助,让我更加坚定了追求学术事业的决心和信心。

在此,我再次向所有帮助和支持过我的人表示衷心的感谢和敬意。他们的支持和鼓励,让我能够顺利完成这篇论文,也让我更加珍惜这段宝贵的学术经历。未来,我将继续努力,不断提升自己的学术水平和综合素质,为实现自己的学术目标和社会价值而不懈努力。

参考文献

[1] 梁恒.互联网企业经营特点对现行会计准则的挑战及对策[J].财务与会计,2017(24):33-34.

[2] 黎佳琦.市场经济下的商品价格促销策略研究[J].中国市场,2023,(36): 122-125.              

[3] 冯健,刘斌,刘振锋.基于策略型消费者购买习惯的产品动态定价决策研究[J].数学的实践与认识, 2019, 49(13):12.

[4] 毕文杰, 胡兵伟. 基于消费者惰性与企业需求学习的动态定价[J]. 经济与管理, 2019, 33 (04): 78-85.

[5] 赵梓良.基于数据挖掘的农产品价格预测研究[D].导师:顾沈明.浙江海洋大学,2020.

[6] 靳占新, 徐中一. 大数据背景下物资价格预测方法[J]. 中国电力企业管理, 2018, (36): 44-45.

[7] 王慧宇. 基于机器学习预测市场营销活动对客户订购定期存款的影响[D]. 导师:王磊. 南开大学, 2021.

[8] Chang Z ,Bin L ,Badamasi S M , et al.Big Data Assisted Empirical Study for Business Value Identification Using Smart Technologies: An Empirical Study for Business Value Identification of Big Data Adaption in E-Commerce[J].International Journal of e-Collaboration (IJeC),2023,19(7):1-19.

[9] Richard Pike;;Nam Sang Cheng;;Karen Cravens;;Dawne Lamminmaki.Trade Credit Terms: Asymmetric Information and Price Discrimination Evidence From Three Continents[J].Journal of Business Finance & Accounting,2005.

[10] 王志文.Vue+Elementui+Echarts在项目管理平台中的应用[J].山西科技,2020,35(06):45-47.

[11] Zuyi L ,Zongwei L ,Yubin Z , et al.Data Analysis and Visualization Platform Design for Batteries Using Flask-Based Python Web Service[J].World Electric Vehicle Journal,2021,12(4):187-187.

[12] 郭玲玲,范思萌,王梅等.基于线性回归算法的在线学习行为分析[J].计算机技术与发展,2022,32(07):191-195.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值