高等数学第四章复习:导数与微分

本文详细阐述了导数的基本概念,包括导数的定义、导函数的生成、求导方法,以及连续性、可导性和可微性的关系。还介绍了判定函数可导的条件、常见运算法则、复合函数和反函数的导数计算,以及隐函数和高阶导数的概念。最后提到函数微分作为函数变化的近似值应用。
摘要由CSDN通过智能技术生成
  1. 什么是导数:导数是因变量的改变量和自变量的改变量在Δx趋近于0时的比值,反应了函数在该点的变化速率。常用于求变速问题的瞬时速率和曲线的切线斜率。发现则是切线斜率的倒数的相反数。
  2. 什么是导函数:对于区间(a,b)上的每一个点,都有对应的导数值与之一一对应,形成的新函数则为导函数。
  3. 如何求导数:首先,求出函数y对应于Δx的该变量。然后,求因变量改变量和自变量该变量的比值。最后,求Δx趋近于0时候,该比值的值就是导数。
  4. 连续、可导和可微的关系:连续不一定可导,但可导一定连续;连续不一定可微,但可微一定连续;可微即可导,可导即可微。
  5. 如何判定函数在某个点是否可导:该函数的左导数和右导数相等即说明该函数在该点可导。
  6. 导数运算法则:函数的和差,乘积(莱布尼茨公式),商,对数函数的导数,三角函数的导数。复合函数,如果y是u的函数,而u是x的函数,则y在x处的导数等于u在x处的导数乘以y在u处的导数,如果是多复合函数则需要用到连锁法则。
  7. 反函数的导数:如果函数y在一个连续区间内是x的连续单调函数,那么它的反函数的导数为y在该点的导数的倒数。
  8.  隐函数的导数:因变量y可以写成自变量x的明显表达式,如y=f(x),这是显函数。如果自变量x和因变量y之间的关系是通过方程来表示,即对于每一个因变量x都会有一个自变量y与之一一对应,假设为y=f(x),那我们可以称这是由方程确定的隐函数。但并不是每一个方程都能确定一个隐函数,即使有隐函数,也不一定能求出y=f(x)。所以求隐函数导数的方法是令y=y(x),把y看成x的复合函数,然后让方程两边对x求导,最后求出一阶导数的表达式即可。
  9. 高阶导数:如果一阶导数连续可导,则可以对一阶导数求导得到二阶导数。它可以这么解释,一阶导数s=s(t)可以表示质点在做变速直线运动,它的一阶导数则是物体运动的瞬时速度,二阶导数是求速度对时间的函数求的是加速度。对于连续可导的n阶导数求导,也可以得到n+1阶导数,二阶及以上导数均为高阶导数
  10. 函数的微分函数在某一点有微小变动时,函数值的变化。可以看成是函数在某一点变化时y变化的近似值。          
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值