临床数据科学中的区组随机化

1884年,Charles Sanders Peirce和Joseph Jastrow在社会科学中首次使用了随机化,进行受控随机实验。1934年,Jerzy Neyman引入了分层抽样,虽然这并不是区组随机化,但与其有相关性。20世纪20年代,R.A. Fisher在Rothamsted实验站为农业研究系统地倡导了随机化,并在1926年的论文中详细阐述了随机化的作用,指出随机排列可以确保获得有效的误差估计。到了20世纪40年代末,随机对照试验在卫生保健领域取得了显著进展,特别是英国流行病学家和统计学家Hill的贡献。在第一个广为人知的随机对照试验——链霉素治疗肺结核的研究中,Hill采用了随机数对受试者进行分配。这一方法不仅提升了试验的科学性,也为现代医学研究奠定了卓越的方法学标准。

在样本量充足的情况下,简单随机化可以使两个组的研究对象数量和混杂因素的分布趋于平衡。然而,在样本量较小或多中心研究中,某些中心的入组研究对象较少,这时简单随机化可能导致组间不平衡。为了减少这些不平衡,受限的随机化方法如区组随机化和分层随机化应运而生。本文重点讲述:区组随机化

区组随机化(Block Randomization)是一种常用的随机化方法,旨在确保在临床试验的整个过程中,各治疗组之间的受试者数量保持平衡,从而减少可能影响结果的混杂因素。

区组随机化的基本原理

区组随机化通过将受试者分成若干个小组(区组),然后在每个区组内进行随机分配来实现。每个区组的大小是预先设定的,并且区组的大小通常是治疗组数量的倍数。例如,如果有两个治疗组,区组大小可以是2、4、6等。

区组的定义:区组是试验材料的一个部分,相比于试验材料全体,它们本身的性质应该更为类似。区组化是用来提高试验精确度的一种方法,通过在每个区组内对感兴趣的试验条件进行比较来减少误差。随机化过程:在每个区组内,试验对象被随机分配到不同的处理组。这样可以确保每个区组内的非试验因素差异最小,而区组间的非试验因素差异最大,从而减少这些非试验因素对结果的影响。

区组随机化的步骤

设定区组大小:首先确定每个区组的大小。区组大小通常是治疗组数量的倍数,以确保在每个区组内能够完全平衡地分配受试者到各个治疗组。例如,区组大小可以是固定的(如4、6、8等)或随机变化的。固定区组大小度的一个潜在问题是,当研究者知道区组大小后,可能会预测最后一个受试者的分配情况,从而引入选择偏倚。为了避免这种情况,可以随机选择区组大小。通常,区组的分配比例应该平等,即处理组和对照组的比例为1:1,除非有特殊理由需要改变这一比例。

生成随机化序列:使用统计软件(如R)生成随机分配序列。在每个区组内,受试者被随机分配到不同的处理组。例如,在一个区组大小为4的情况下,可以有以下几种分配组合:AABB、ABAB、BAAB、BABA、BBAA和ABBA。随机选择其中一种分配方式,并相应地分配受试者。记住,为了防止选择偏倚,区组内的随机分配序列应在试验开始前生成,并对相关研究人员和受试者保密,直至试验结束。

受试者分配:当一个新的受试者被招募到试验中时,根据他/她所属的区组和该区组的随机化序列,将受试者分配到相应的治疗组。

区组随机化的优点和缺点

优点缺点
样本量平衡:区组随机化确保了在试验的每个阶段,各治疗组之间的受试者数量保持平衡,避免了因样本量不均衡而导致的混杂因素。实现复杂:区组随机化的实施比简单随机化更复杂,需要预先设定区组大小并生成随机化序列。
减少偏倚:通过在每个区组内进行随机分配,区组随机化减少了选择偏倚和时间趋势对试验结果的影响。需要严格执行:为了确保区组随机化的有效性,研究人员必须严格执行预定的随机化方案,避免任何形式的偏倚。
适用于小样本量试验:在样本量较小的临床试验中,区组随机化尤为重要,因为小样本量试验更容易受到样本量不均衡的影响。区组大小的选择:选择适当的区组大小是一个挑战。区组太小可能导致不完全平衡,区组太大则可能无法适应试验的进展。

区组大小权衡的因素

试验规模

对于大型试验(样本量大于200),区组大小的影响较小,可以选择较大的区组。而对于小型试验,较小的区组大小更有利于保持组间平衡。

在研究中,当样本量较大时,使用传统的随机数字表进行随机化可能会增加工作量。这种情况下,可以利用计算机软件(如SPSS、Stata、R等)来简化随机化过程。这些软件可以根据区组内受试者的编号,生成在0到p之间的随机数,从而高效地完成随机化任务。

盲法设计

在非双盲试验中,应避免使用过小的区组(如2或4),因为这可能导致研究人员预测分配情况。而在双盲试验中,可以使用较小的固定区组大小。

灵活性与可预测性的平衡

较大的区组提供更多灵活性,但也增加了不平衡的风险。较小的区组可以更好地控制平衡,但可能更容易被预测。

实际考虑

区组大小应该是分配比例的倍数。例如,对于1:1的分配,可以选择2、4、6、8等。此外,还应考虑试验的招募速度和持续时间。

随机化区组大小

在非双盲试验中,可以考虑随机化区组大小(如在2、4、6、8之间随机选择),以减少预测性。

统计效能

较小的区组通常能提供更好的统计效能,特别是在进行中期分析时。

分层因素 

如果使用分层区组随机化,每个分层组合中的区组大小不应过小,以确保充分的随机性。

建议

  1. 对于大多数试验,区组大小在4-8之间是合适的。
  2. 在非双盲试验中,考虑使用随机化的区组大小或较大的区组(如8或12)。
  3. 在双盲试验中,可以使用较小的固定区组大小(如4或6)。
  4. 始终权衡平衡性、可预测性和实际操作的需求。
  5. 在确定区组大小时,咨询统计学家的意见可能会很有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值