根据《2021年商业数据分析调查》显示,当企业未能让数据分析师主导数据分析实践时,项目失败率会显著增加,失败率比有分析师参与的项目高出2.8倍。此外,调查还显示,75%的高管认为企业需要数据驱动决策,高效企业中使用商业数据分析师的频率比普通企业高出93%.
什么是商业数据分析师?
这是因为在当今快节奏的商业环境中,数据的重要性日益凸显,能够从数据中提取洞察力对企业做出明智决策至关重要。这时,商业数据分析师应运而生。他们为企业提供必备技能,帮助企业理解数据并发现推动增长和盈利的洞察。
商业数据分析师就像是侦探,运用数据和分析工具调查复杂的业务问题。他们结合数据分析、建模和统计分析的技术技能,与沟通、协作和批判性思维等能力,帮助企业发现洞察力并推动业务增长。
商业数据分析的过程较为复杂,通常包含以下几个关键步骤。首先是识别业务问题,这要求明确需要解决的业务问题,具体而言,就是要理解业务目标,并确定用以衡量成功的关键指标。接着是数据收集和准备,即收集分析所需的数据,并对其进行清洗、整理和转换,使其便于后续分析。随后进行数据分析,运用统计和定量分析技术,识别数据中的趋势、模式和相关性。最后是洞察传递,将分析得出的洞察传递给利益相关者和决策者,为企业的决策提供有力支持。
商业数据分析师在分析项目中承担着诸多重要职责。他们需全面理解组织目标,识别相关数据源以把握全局;拥有前瞻性视野,能预见数据驱动的洞察力对组织未来发展的影响,助力识别新机会并优化业务流程;作为业务领域专家,具备深厚的业务知识和数据分析技术,确保生成的洞察力具有实际意义;负责从定义问题到呈现洞察的整个分析项目生命周期,进行全流程管理;具备数据讲故事的能力,通过数据讲述引人入胜的故事,影响决策者采取行动;与数据科学家合作,提供业务背景和专业知识,确保技术模型与企业战略目标一致;还在变革管理方面发挥作用,帮助企业将新的分析洞察力融入决策流程,确保相关变革顺利进行。
为什么R是商业数据分析师的最佳选择之一?
1. 强大的数据处理能力
在商业数据分析中,处理和整理数据是最为基础和耗时的步骤。R语言具有丰富的内置函数和扩展包,能够高效地处理结构化和非结构化数据。1)数据清洗和预处理:R的dplyr
和tidyr
等包可以快速、简洁地对数据进行清理、筛选、合并和重塑。例如,使用dplyr
包,分析师可以轻松进行数据筛选、排序和分组操作。此外,tidyverse
生态系统为数据清洗提供了模块化的解决方案,大幅简化了数据预处理工作。2)处理大数据:随着业务规模的扩大,数据量的增长也是必然趋势。R不仅可以处理传统的中小型数据集,还可以通过data.table
包和与数据库(如SQL)的无缝集成来处理海量数据。此外,R与Hadoop、Spark等大数据平台的兼容性,使得分析师能够高效地处理分布式环境下的庞大数据集。
2. 丰富的统计分析功能
R语言最初是作为统计计算工具开发的,因此在数据分析领域有着无可比拟的优势。对于商业数据分析师而言,统计分析是发现数据背后规律、支持决策的重要手段。1)回归分析:回归分析在商业数据分析中应用广泛,R提供了lm()
函数用于线性回归,glm()
函数用于广义线性模型的拟合,帮助分析师识别变量间的关系,预测市场趋势、销售额等商业指标。2)时间序列分析:许多商业数据具有时间序列性质,如销售额、用户活跃度等。R的forecast
包提供了多种时间序列建模和预测的方法,包括ARIMA模型、指数平滑等,帮助分析师更好地捕捉趋势与季节性变化,制定精准的商业计划。3)假设检验与A/B测试:在市场营销、产品优化等领域,A/B测试是一种常用的实验方法。R提供了便捷的假设检验工具,分析师可以通过t检验、卡方检验等方法快速判断不同策略的有效性。
3. 强大的可视化能力
数据可视化是将复杂的商业数据转化为直观信息的有效方式,帮助管理层快速理解数据背后的含义,并作出明智的决策。R的可视化功能极为强大且灵活,尤其是ggplot2
包的使用,更是广受数据分析师的青睐。1)高级图形绘制:ggplot2
不仅可以绘制柱状图、折线图、散点图等常见图形,还能够通过组合多种元素实现自定义复杂图形。R的图形系统支持层叠操作,能够根据需求定制图表,满足复杂的商业数据可视化需求。2)交互式图表:在商业环境中,交互式图表往往比静态图表更具吸引力。R的plotly
和shiny
包可以生成具有交互功能的图表,分析师可以通过这些工具制作用户友好的仪表盘,供管理层和其他团队成员实时查看、操作和解读数据。
4. 强大的扩展性与社区支持
R语言的开放性使其具有极强的扩展性。无论是商业预测、市场细分还是客户行为分析,R的CRAN(Comprehensive R Archive Network)上都有丰富的包可以提供相应的支持。此外,R语言拥有一个庞大且活跃的全球社区,商业数据分析师可以通过社区获取最新的工具和算法,保持与前沿数据分析技术的同步。1)灵活的扩展性:R不仅拥有数以万计的扩展包,还可以与Python、C++等语言结合使用,从而使其在数据处理和分析上几乎无所不能。对于商业应用,R可以与Excel、SQL、Tableau等商业工具无缝衔接,使得它可以轻松融入企业的现有技术栈。2)持续的更新与支持:R社区非常活跃,CRAN上每天都有新的扩展包和工具发布。商业数据分析师可以随时访问社区论坛、博客、GitHub等资源,学习新的数据处理方法、算法模型,并及时解决技术问题。
5. 商业应用中的广泛实践
R语言已被广泛应用于多个行业的商业数据分析中。1)金融业:R在金融数据分析中具有广泛的应用,尤其是在风险管理、投资组合优化、定价模型等方面。R的时间序列分析工具和量化金融库使得金融分析师能够进行复杂的金融建模。2)市场营销与客户分析:R可以帮助营销人员分析客户的行为模式,优化市场策略。在客户细分、客户流失预测和市场响应分析中,R语言都展现了卓越的性能。2)零售业:零售行业的数据分析涉及销售预测、库存管理、客户偏好分析等方面。R通过其强大的预测建模和优化算法,帮助零售商优化库存管理,提升销售效率。
........................
在这里,你学到的并非仅仅是 R 的某一个技巧,而是能够从零开始,深入且系统地学习 R 语言。此外,本专栏每周至少定期更新三篇文章,每篇文章篇幅均在 5000 字以上。而且,对于已经发表的知识点,我们也会根据新的技术或理解及时进行更新,这是纸质版图书无法做到的。为了让更多的忠实粉丝和同学们享受到实惠,本专栏采用折扣定价策略。随着章节的不断完成,折扣力度会逐渐减小。所以,现在正是订阅的最佳时机!
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:数据科学的发展历程,何 R 备受青睐及我们专栏的独特之处(更新20240822)-CSDN博客
1章2节:关于人工智能、机器学习、统计学连和机器学习、R 与 ChatGPT 的探究 (更新20240814)-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)_rst语言选择哪个镜像-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20240823)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置(更新20240807 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(更新20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章5节:用R绘制平行坐标图-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客