7篇1章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法

在数据科学和机器学习中,随机抽样是一项基本而强大的工具,广泛应用于模型训练、验证和结果的可靠性评估。然而,在处理小样本和不均衡数据集时,普通的随机抽样方法可能会导致模型的泛化能力受限,甚至带来偏差。本文围绕多次随机抽样的Bootstrap方法和加权随机抽样方法两种方法进行介绍。

一、多次随机抽样的Bootstrap法

在数据科学和机器学习的研究中,模型的稳定性和准确性是至关重要的。然而,在小样本或不均衡数据集中,模型往往容易受到单次随机划分的影响,导致结果的不确定性。Bootstrap方法作为一种统计重抽样技术,提供了一种有效的解决方案。通过从原始数据集中进行有放回的抽样,Bootstrap能够生成多个训练集和测试集,帮助研究人员提高模型的泛化能力和稳定性。

1、核心思想和原理

多次随机抽样(Bootstrap方法)是一种统计重抽样技术,通过从原始数据集中进行有放回的抽样,生成多个训练集和测试集。它的核心思想是利用有限样本来估计统计量的分布,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值