毕业设计:基于深度学习的交通灯识别算法系统 目标检测

本文介绍了一种基于深度学习的交通灯识别系统,结合卷积神经网络(如ACBlock和SoftPool)、YOLOv5算法以及记忆性特征融合网络,通过自制数据集进行训练和实验,探讨了模型设计、实现细节和性能评估。消融实验帮助深入理解各组件对系统的影响。
摘要由CSDN通过智能技术生成

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 卷积神经网络

2.2 YOLOv5算法

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度学习的交通灯识别算法系统

设计思路

一、课题背景与意义

       随着城市化进程的加速,交通拥堵和交通事故成为了日益严重的问题。交通灯作为道路交通的重要组成部分,其准确识别对于智能交通系统的发展至关重要。然而,传统的交通灯识别方法往往受到光照、天气、遮挡等因素的影响,导致识别准确率低、稳定性差。因此,研究基于深度学习的交通灯识别算法系统具有重要的现实意义和应用价值。该系统能够实现对交通灯的快速、准确识别,为智能交通系统的建设提供技术支持,有助于提高道路交通的安全性和效率。

二、算法理论原理

2.1 卷积神经网络

       借鉴了ACNet的思想,设计了ACBlock作为CSP结构的基础卷积,旨在提高主干网络对目标的特征提取能力。ACBlock由三个卷积核组成,分别是3×3×c、3×1×c和1×3×c。其中,3×3×c卷积核是一个正则卷积,用于提取图像的基础特征。而3×1×c和1×3×c卷积核则分别是竖形和横形卷积核,用于提取图像的纵向和横向特征,以及目标的位置和旋转特征。通过引入这些不同形状的卷积核,ACBlock能够提取更多的特征信息,从而增强了主干网络的特征提取能力。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

       SoftPool是一种池化方法,使用一个3×3步长为2的掩膜对特征图进行池化。在激活后的特征图中,较高激活表示主要特征信息,较低激活表示次要信息。在下采样过程中,掩膜覆盖在特征图的3×3区域上,并计算该区域内每个激活的Softmax权重,较高的激活获得更高的权重。在池化区域内,所有激活参与加权累加,较高的激活权重更大,因此主导着池化结果的特征。然而,较低的激活仍然能够将自己的次要特征信息传递到池化结果中。SoftPool通过加权求和的方式保留了激活信息,并对不同激活的关注度进行区分,从而在实现下采样的同时减少信息损失。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

       ACBlock的引入导致模型参数增加约70%。为了在保持精度不变的条件下减少模型参数,本文设计了DSConv来替代主干网络中的部分正则卷积。DSConv由两个卷积核组成,分别是3×3×1和1×1×c。卷积过程分为两步进行,首先使用3×3×1的卷积核进行逐通道卷积,得到中间结果f1,然后再使用1×1×c的卷积核对f1进行逐点卷积,得到最终的DSConv输出f2。相比于正则卷积,DSConv的参数更少,直接减少了8c-9个参数(当c≥3时)。通过将主干网络中的第二层卷积核替换为DSConv,可以减少模型参数,而对模型性能几乎没有任何影响。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

2.2 YOLOv5算法

       YOLOv5是一种目标检测算法,通过将目标检测问题转化为回归问题来实现快速检测。它采用网格检测方法,在每个网格中预测3个边界框(bounding box),每个边界框包含4个坐标、1个置信度和C个条件类别概率。为了增加感受野而不影响推理速度,YOLOv5在骨干网络中引入了Focus层,将图像的宽度和高度信息转化为通道信息。为了减少冗余信息,YOLOv5借鉴了CSPNet的思想,设计了两种不同的BottleneckCSP结构,分别称为CSP1和CSP2。CSP1用于特征提取部分,CSP2用于特征融合部分。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

       记忆性特征融合网络,旨在解决YOLOv5在特征融合过程中丢失底层特征和小尺度信息的问题,从而提高模型对目标的定位和回归能力。传统的特征融合方式只使用高级语义信息来计算损失,而底层特征没有被充分利用,导致模型对小尺度目标的学习能力受限,边缘信息的学习也不足。为了解决这个问题,本文设计了记忆性融合网络,其中没有边缘融合节点,而是使用远跳链接将底层特征直接传递到语义生成节点。这样做的好处是网络末端可以再次将原始底层特征和高级语义信息进行融合,最终送入损失函数的特征同时包含了高级语义信息和底层特征。

       通过这种记忆性特征融合方式,模型在学习高级语义信息的同时也能够学习到底层信息,从而增强了模型对小尺度目标的检测能力。这种设计有助于提高模型的目标定位和回归能力,使其能够更好地应对各种尺度的目标检测任务。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

       通过引入记忆性特征融合网络,模型可以获得更多底层信息,从而提高目标的定位精度和回归框的精度。在特征融合的热力图中可以观察到,相比于PANet,记忆性特征融合网络更加集中地关注目标中心,为检测头提供了准确的位置中心,有助于提高模型的定位能力。因此,记忆性特征融合网络可以提高目标的定位精度。热力图中目标边缘处较多的热点会增加模型对边缘信息的判别难度。通过计算预测框和真实框之间的交并比(IOU),可以评估预测框回归的精确性。

毕业设计:基于深度学习的交通灯识别算法系统 目标检测

三、检测的实现

3.1 数据集

       为了训练和优化基于深度学习的交通灯识别算法系统,一个高质量且多样化的交通灯数据集是必不可少的。由于公开数据集中缺乏专门针对交通灯识别的数据集,我们决定自制一个交通灯数据集。我们选择了多个交通繁忙的交叉路口作为拍摄地点,在不同的时间段和天气条件下进行拍摄,以捕捉各种光照和背景变化。同时,我们还使用了多种角度和距离的拍摄方式,以获取交通灯在不同视角下的图像。在拍摄过程中,我们对每一张图像都进行了精确的标注,确保数据集的准确性和可靠性。最终,我们成功构建了一个包含数千张交通灯图像的数据集,为后续的研究提供了宝贵的数据资源。

       为了提高模型的泛化能力和鲁棒性,我们对自制的交通灯数据集进行了数据扩充操作。这包括图像的旋转、裁剪、缩放等几何变换,以及亮度、对比度和色彩空间的调整。通过这些操作,我们增加了数据集的多样性和复杂性,使得模型能够在各种不同的条件下进行学习和识别。此外,我们还采用了数据增强的技术,如生成对抗网络(GAN),来进一步扩充数据集,并提升模型的性能。这些努力为交通灯识别算法系统的研究和应用奠定了坚实的基础。

3.2 实验环境搭建

       本实验环境使用Windows操作系统,并利用Python作为主要的编程语言进行算法和模型的实现。使用PyTorch作为深度学习框架,构建和训练神经网络模型。借助Pandas等库,完成数据的加载、处理和转换。这样的实验环境提供了一个方便和高效的平台,用于开发和测试基于深度学习的交通灯识别算法系统。

3.3 实验及结果分析

       使用了两个主要的评估指标来评估记忆性特征融合网络的性能。首先是平均IOU,它衡量了预测框和真实框之间的重叠程度,用于评估目标检测的准确性。其次是定位精度,即预测框中心与真实框中心之间的欧氏距离,用于评估模型对目标位置的精确性。

       通过对不同组件或方法的逐个去除或还原,消融实验可以帮助我们理解每个组件对整体系统性能的贡献程度。这种精细的实验设计使得我们能够准确评估和量化每个组件的作用,从而深入研究模型的工作原理。通过消融实验,我们可以验证假设、验证新方法的有效性,并且对模型的改进方向提供指导。此外,消融实验还可以帮助我们识别关键的组件或步骤,以及发现可能的瓶颈或改进空间。

相关代码示例:

# 加载预训练的模型
base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# 添加自定义的全局平均池化层
x = base_model.output
x = GlobalAveragePooling2D()(x)

# 添加全连接层
x = Dense(1024, activation='relu')(x)
predictions = Dense(3, activation='softmax')(x)  # 3个类别:红灯、黄灯、绿灯

# 构建模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 加载训练数据和标签
train_data = [...]  # 训练数据集
train_labels = [...]  # 训练标签集

# 数据预处理
train_data = [...]  # 对数据进行预处理,如缩放、归一化等

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 22
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值