毕业设计:基于深度学习的垃圾短信识别算法系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 深度学习

2.2 短信特征提取

2.3 垃圾短信检测

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度学习的垃圾短信识别检测系统

设计思路

一、课题背景与意义

       随着移动通信的普及和垃圾短信的增加,垃圾短信成为了一个严重的问题,给人们的日常生活带来了困扰和骚扰。传统的垃圾短信识别方法主要依靠规则和关键词匹配,无法有效地应对新型的垃圾短信形式和变化。垃圾短信识别检测系统通过对大量垃圾短信数据的分析和学习,可以实现准确、实时的垃圾短信识别,帮助用户过滤和屏蔽垃圾短信,提升通信体验和信息安全。

二、算法理论原理

2.1 深度学习

       深度学习,尤其是深度信念网络(DBN)和深度神经网络,通过包含多个隐含层的结构,显著提升了模型处理复杂数据的能力。与传统的机器学习模型相比,深度学习模型能够自动学习数据的高级特征,无需人工特征工程。这种自动特征学习能力使得深度模型在诸如文本识别、分类以及处理音乐、文字和图片数据等领域变得非常流行。
       深层网络与浅层网络的主要区别在于,浅层网络的表征能力有限,对于复杂数据的学习往往需要大量的人工特征设计和计算资源。而深层网络通过其非线性变换能力,能够捕捉到数据的多维度和抽象特征,从而实现对复杂函数的分解,将复杂问题简化。这种能力使得深层网络在处理非线性问题和发现数据中的深层模式方面具有显著优势。

https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=%E6%AF%95%E4%B8%9A%E8%AE%BE%E8%AE%A1%EF%BC%9A%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%9E%83%E5%9C%BE%E7%9F%AD%E4%BF%A1%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95%E7%B3%BB%E7%BB%9F%20&pos_id=0Jh7c3JD

2.2 短信特征提取

       BOW模型是一种文本特征提取方法,它通过单词的出现与否来构建文本的特征向量,但这种方法简单地将文本转换为无序的词频表示,忽略了单词的顺序和上下文信息。TF-IDF方法则通过赋予文本中每个词一个权重,来量化其在整个文档集合中的重要性,同时考虑了词频和逆文档频率。

       CBOW模型通过上下文中的多个词来预测目标词,即中心词。它采用一个简单的神经网络架构,其中输入层接收上下文词的词向量,这些词向量被组合起来(通常是取平均值)形成一个上下文向量,然后通过隐藏层和输出层来预测中心词。CBOW模型效率较高,但相对Skip-gram模型,它对词序的敏感度较低。
       Skip-gram模型则相反,它使用目标词(中心词)来预测其上下文词。在这个模型中,中心词的词向量被输入到隐藏层,然后隐藏层输出与上下文词向量相对应的概率分布。Skip-gram模型对词序更加敏感,且在处理罕见词时表现更好,但它比CBOW模型更加计算密集。

毕业设计:基于深度学习的垃圾短信识别算法系统

2.3 垃圾短信检测

        设计一个结合了卷积神经网络(CNN)和长短时记忆网络(LSTM)优点的垃圾短信识别模型。CNN擅长提取局部特征,如N-gram特征,可以通过卷积操作有效识别垃圾短信中的常用词。而LSTM能够捕捉文本中的长距离依赖关系,处理任意长度的句子。将这两种网络结构融合,可以使模型在识别垃圾短信时更加准确和高效。
       设计的CNN-LSTM模型首先接受短信文本作为输入,通过嵌入层将文本转换为词向量。接着,这些词向量通过卷积模块,利用卷积操作提取局部特征。然后,通过最大池化层对特征进行降维,以减少模型复杂度。接下来,池化后的特征被送入LSTM模块,该模块能够捕捉文本中的长距离依赖关系,提取出更高级别的特征表示。最后,模型通过Sigmoid激活函数对LSTM输出的特征进行分类,以判断短信是否为垃圾短信。

毕业设计:基于深度学习的垃圾短信识别算法系统

       将短信文本转换为词向量,然后通过一维卷积层提取特征,利用ReLU激活函数引入非线性,捕捉文本中的局部特征。随后,使用最大池化层降低特征维度,再通过LSTM模块提取长距离依赖关系。最后,使用Sigmoid激活函数进行分类,以判断短信是否为垃圾短信。通过融合CNN和LSTM的优点,该网络能够提高垃圾短信识别的准确性和效率。

三、检测的实现

3.1 数据集

       由于网络上没有现有的合适的垃圾短信数据集,本研究决定通过网络爬取的方式收集数据并制作一个全新的数据集。通过编写爬虫程序,我们从各种在线通信平台和社交媒体中收集了大量包含垃圾短信的文本数据。这些数据涵盖了不同类型的垃圾短信,包括广告推销、诈骗信息、恶意链接等。通过网络爬取的方式,我们能够获得真实、多样的垃圾短信数据,为基于深度学习的垃圾短信识别检测系统的研究提供可靠的数据基础。

       为了提高系统的性能和泛化能力,本研究对自制的垃圾短信数据集进行了数据扩充。通过采用文本生成模型和数据增强技术,我们对原始数据集进行了文本扩充和样本增强。通过文本变换、替换和合成等技术对原始样本进行了增强,生成更多样的垃圾短信样本。

3.2 实验环境搭建

       实验中使用的计算机硬件配置较为强劲,配备了Intel Core系列6核12线程CPU,主频为3.20GHz,16.0GB的内存和NVIDIA GeForce GTX 1080ti显卡,拥有11GB的显存。这样的配置提供了强大的计算和图形处理能力,适合进行复杂计算和高清图形渲染的实验任务。 

毕业设计:基于深度学习的垃圾短信识别算法系统

3.3 实验及结果分析

       在实验中,我们使用准确率、精确率、召回率和F1分数作为主要评价标准来衡量垃圾短信识别模型的性能。这些指标分别从不同角度反映了模型的准确性、稳健性和综合性能。为了计算这些指标,我们需要统计真阳性数、假阳性数、假阴性数和真阴性数等基础指标。通过这些综合评价,我们可以全面了解模型在垃圾短信识别任务上的表现,并为进一步优化模型提供依据。

相关代码示例:

model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_sequence_length))
model.add(Bidirectional(LSTM(64, return_sequences=True)))  # 可以根据需要调整LSTM单元的数量
model.add(Bidirectional(LSTM(64)))  # 同样,可以根据需要调整LSTM单元的数量
model.add(Dense(1, activation='sigmoid'))  # 对于二分类问题,使用sigmoid激活函数

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 真实的标签
true_labels = [0, 1, 1, 0, 1, 0]
# 模型预测的标签
predicted_labels = [0, 1, 0, 0, 1, 1]

# 计算准确率
accuracy = accuracy_score(true_labels, predicted_labels)
print("准确率:", accuracy)

# 计算精确率
precision = precision_score(true_labels, predicted_labels)
print("精确率:", precision)

# 计算召回率
recall = recall_score(true_labels, predicted_labels)
print("召回率:", recall)

# 计算F1分数
f1 = f1_score(true_labels, predicted_labels)
print("F1分数:", f1)

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值