前言
本文简单介绍了对角矩阵\逆对角矩阵、矩阵的秩、奇异矩阵等线性代数中的矩阵知识,同时关乎到人工智能。
一、对角矩阵(Diagonal Matrix)
1.1定义
对角矩阵是主对角线以外的元素全为零的方阵,形式为:
若所有对角元素非零,则称为可逆对角矩阵。
1.2特性
行列式
行列式:行列式为对角元素的乘积,即逆矩阵为各对角元素的倒数组成的对角矩阵。
运算简化
运算简化:与对角矩阵相乘只需对应元素相乘,计算效率高。
1.3应用领域
深度学习
优化算法(如Adam)中使用对角矩阵自适应调整参数的学习率。
参数初始化时,对角矩阵可用于独立调整不同维度的特征。
信号处理
离散傅里叶变换(DFT)或离散余弦变换(DCT)中,频域系数常以对角形式表示。
量子力学
密度矩阵的对角化表示统计混合态中的独立概率分布。
经济学
投入产出分析中,对角矩阵表示各部门的直接消耗系数。
二、矩阵的秩(Rank of a Matrix)
2.1定义
矩阵的秩是其行(或列)向量