深度学习篇---对角矩阵&矩阵的秩&奇异矩阵



前言

本文简单介绍了对角矩阵\逆对角矩阵、矩阵的秩、奇异矩阵等线性代数中的矩阵知识,同时关乎到人工智能。


一、对角矩阵(Diagonal Matrix)

1.1定义

对角矩阵是主对角线以外的元素全为零的方阵,形式为:
对角矩阵

若所有对角元素非零,则称为可逆对角矩阵。

1.2特性

行列式

行列式:行列式为对角元素的乘积,即逆矩阵为各对角元素的倒数组成的对角矩阵。

运算简化

运算简化:与对角矩阵相乘只需对应元素相乘,计算效率高。

1.3应用领域

深度学习

优化算法(如Adam)中使用对角矩阵自适应调整参数的学习率
参数初始化时,对角矩阵可用于独立调整不同维度的特征

信号处理

离散傅里叶变换(DFT)或离散余弦变换(DCT)中,频域系数常以对角形式表示。

量子力学

密度矩阵的对角化表示统计混合态中的独立概率分布

经济学

投入产出分析中,对角矩阵表示各部门的直接消耗系数

二、矩阵的秩(Rank of a Matrix)

2.1定义

矩阵的秩是其行(或列)向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值