通义千问满血版推理模型QwQ-32B FP16 VS DeepSeek R1 671B Q4性能对比

通义千问满血版推理模型QwQ-32B FP16 (模型文件66GB)   VS   DeepSeek R1 671B Q4(模型文件404GB)性能对比评测

通义千问(Qwen)Qwq-32b模型 量化、模型大小、下载途径

Q3--17GB--LM Studio-Model Search

Q6-- 27GB--LM Studio-Model Search

Q8 --35GB--LM Studio-Model Search

Q4-- 20GB-- ollama run qwq

FP16-- 66GB --ollama run qwq:32b-fp16

计算对比内容:计算农历2025年全年天数。 对比差距:答案优于DS-R1-Q4。

文案输出对比内容:我是主营学生用品文具店老板,帮我出一份国庆节全场八折促销文案。 对比差距:和DS-R1-Q4输出字数、文案质量相近。

编程对比内容:制作一个网页小游戏,网页标题名为“浪漫烟花”,游戏功能为鼠标点击网页底部区域任意位置,实现在点击位置燃放上升多个烟花,在屏幕上方位置绚丽绽放,网页背景黑色,所有代码保存在一个网页里。 对比差距:Qwq-32b 分HTML、CSS和JavaScript三个部分提供各部分代码,代码质量和DS-R1-Q4相近。Qwq分模块提供的代码需要用户再整合,不如DS提供的完整的代码直接复制另存为HTML文件易用,新手友好。

### 不同参数配置下的 DeepSeek 模型性能对比 #### 32B FP16 本特性 FP16(半精度浮点数)是一种常见的数值表示方法,适用于许多现代 GPU 和加速器硬件。对于 DeepSeek32B 参数量级而言: - **显存占用**:采用 FP16 可显著减少模型所需的显存量,通常约为原生 FP32 显存的一半[^1]。 - **推理速度**:由于减少了数据位宽,计算效率得以提升,从而加快了推理过程中的矩阵运算速度。 - **适用场景**:适合于高性能计算环境,尤其是当目标是在保持较高准确性的同时最大化吞吐率的应用场合。 ```python import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' model_32b_fp16 = ModelClass.from_pretrained('deepseek-r1-32b').half().to(device) input_tensor = prepare_input_data() output = model_32b_fp16(input_tensor.half()) ``` #### 70B Q8 本特性 Q8 表示的是量化后的整数形式存储权重的方式之一,它能极大程度上降低内存带宽需求并提高缓存利用率。针对拥有更大参数规模的 DeepSeek 70B 来说: - **显存节省**:相比于未压缩前的状态,通过八比特量化技术可以大幅削减所需显存空间至原来的四分之一左右[^3]. - **部署灵活性**:尽管牺牲了一定程度上的精确度,但在某些特定领域如自然语言处理任务中仍可获得令人满意的成果,并且更容易实现在边缘设备或其他受限环境中运行大模型的目的。 - **应用场景扩展**:特别适用于需要处理大规模文本数据分析的任务,例如科学研究、金融建模等领域内的高级应用案例[^2]。 ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, ) model_70b_q8 = AutoModelForCausalLM.from_pretrained( "deepseek-r1-70b", quantization_config=bnb_config, ).to(device) input_tensor = prepare_input_data() output = model_70b_q8(input_tensor.to(torch.int8)) ``` 综上所述,在选择具体的 DeepSeek R1 本时应综合考虑实际项目的资源条件与预期效果之间的平衡关系。较小尺寸但经过高效优化过的轻量化变体往往能在普通硬件平台上表现出色;而对于那些追求极限表现力的研究课题,则推荐选用更高规格的产品线成员。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值