【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块

### 修改YOLOv8实现以添加LSKA模块 为了在YOLOv8中集成LSKA(Local Spatial Key Attention模块,需对多个文件进行调整。具体来说,在`ultralytics/nn/modules/block.py`、`ultralytics/nn/modules/__init__.py`以及`ultralytics/nn/tasks.py`这三个位置实施改动[^2]。 #### 编辑block.py文件 首先是在`ultralytics/nn/modules/block.py`内定义新的类来表示LSKA层: ```python import torch.nn as nn from torchvision.ops import DeformConv2d class LSKABlock(nn.Module): def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True): super(LSKABlock, self).__init__() # 定义卷积操作和其他必要的组件... def forward(self, x): # 实现前向传播逻辑... pass ``` 此部分负责创建具体的LSKA机制并将其封装成可重用的形式。 #### 更新__init__.py文件 接着更新`ultralytics/nn/modules/__init__.py`以便能够导入新加入的LSKABlock类: ```python from .block import (C3, SPPF, Bottleneck, Conv, Concat, DetectMultiBackend, DFL, LSKABlock) # 新增这一行用于加载自定义的LSKA Block ``` 这一步骤确保其他地方可以方便地访问到这个新增加的功能块。 #### 调整tasks.py配置 最后是对`ultralytics/nn/tasks.py`做适当修改,使得模型结构支持SPPF中的LSKA特性: ```python if m is SPPF: c_ = int(c * e) # 计算通道数 layers.append(SPPF(c_, c_, k=k)) if not use_lsk else \ layers.append(LSKABlock(c_, c_, k=k)) ``` 这里通过条件判断语句实现了当启用LSKA选项时替换默认SPPF的行为。 完成上述更改之后,按照常规流程编写相应的YAML配置文件来进行训练即可体验带有增强版空间注意力建模能力的新版本YOLOv8网络架构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值