肥胖风险的多类预测简单数据处理

本文介绍了如何使用Python的pandas库加载CSV数据,并检测并打印出train.csv中非数值类型的列名,以便于后续的数据清洗和分析工作。
摘要由CSDN通过智能技术生成

简单的数据处理

import pandas as pd  
  
# 加载数据
data = pd.read_csv(r"C:\Users\11794\Desktop\新建文件夹 (2)\train.csv", encoding='utf-8', encoding_errors='replace')  
  
# 检测非数值列  
non_numeric_columns = data.select_dtypes(exclude=['number', 'bool', 'datetime64', 'timedelta64']).columns  
  
# 打印非数值列的名字  
print(non_numeric_columns)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值