YOLOv11改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力

一、本文介绍

本文记录的是基于NAM模块的YOLOv11目标检测改进方法研究。 许多先前的研究专注于通过注意力操作捕获显著特征,但缺乏对权重贡献因素的考虑,而这些因素能够进一步抑制不重要的通道或像素。而本文利用NAM改进YOLOv11通过权重的贡献因素来改进注意力机制,提高模型精度。


二、NAM介绍

NAM: Normalization-based Attention Module

NAM(Normalization - based Attention Module)注意力模块的设计的原理和优势如下:

2.1 NAM设计原理

  • NAM采用了来自CBAM(Convolutional Block Attention Module)的模块集成方式,并重新设计了通道空间注意力子模块。
  • 通道注意力子模块中,使用了批归一化(Batch Normalization,BN)的缩放因子来衡量通道的方差,并表示其重要性。具体公式为: B o u t = B N ( B i n ) = γ B i n − μ B σ B 2 + ϵ + β B_{out } = BN(B_{in}) = \gamma \frac{B_{in} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \beta Bout=BN(Bin)=γσB2+ϵ BinμB+β,其中 μ B \mu_{B} μB σ B \sigma_{B} σB分别是小批量 B B B的均值和标准差; γ \gamma γ β \beta β是可训练的仿射变换参数(缩放和平移)。通道注意力子模块的输出特征 M c M_{c} Mc表示为: M c = s i g m o i d ( W γ ( B N ( F 1 ) ) ) M_{c} = sigmoid(W_{\gamma}(BN(F_{1}))) Mc=sigmoid(Wγ(BN(F1))),其中 γ \gamma γ是每个通道的缩放因子,权重 W γ W_{\gamma} Wγ通过 W γ = γ i / ∑ j = 0 γ j W_{\gamma} = \gamma_{i} / \sum_{j = 0} \gamma_{j} Wγ=γi/j=0γj获得。

在这里插入图片描述

  • 空间维度上也应用了BN的缩放因子来测量像素的重要性,称为像素归一化。相应的空间注意力子模块的输出 M s M_{s} Ms表示为: M s = s i g m o i d ( W λ ( B N s ( F 2 ) ) ) M_{s} = sigmoid(W_{\lambda}(BN_{s}(F_{2}))) Ms=sigmoid(Wλ(BNs(F2))),其中 X X X是缩放因子,权重 W λ W_{\lambda} Wλ通过 W λ = λ i / ∑ j = 0 λ j W_{\lambda} = \lambda_{i} / \sum_{j = 0} \lambda_{j} Wλ=λi/j=0λj获得。

在这里插入图片描述

  • 为了抑制不太显著的权重,在损失函数中添加了一个正则化项,具体公式为: L o s s = ∑ ( x , y ) l ( f ( x , W ) , y ) + p ∑ g ( γ ) + p ∑ g ( λ ) Loss = \sum_{(x, y)} l(f(x, W), y) + p \sum g(\gamma) + p \sum g(\lambda) Loss=(x,y)l(f(x,W),y)+pg(γ)+pg(λ),其中 x x x表示输入, y y y是输出, W W W代表网络权重, l ( ⋅ ) l(\cdot) l()是损失函数, g ( − ) g(-) g() l 1 l_{1} l1范数惩罚函数, p p p是平衡 g ( γ ) g(\gamma) g(γ) g ( λ ) g(\lambda) g(λ)的惩罚项。

2.2 优势

  • 通过抑制不太显著的特征,NAM更高效。
  • 与其他三种注意力机制(SE、BAM、CBAM)在ResNet和MobileNet上的比较表明,NAM在单独使用通道或空间注意力时,性能优于其他四种注意力机制;在结合通道和空间注意力时,在具有相似计算复杂度的情况下,性能也更优。
  • 与CBAM相比,NAM在通道注意力模块中显著减少了参数数量,在空间注意力模块中参数增加不显著,总体上参数更少。

论文:https://arxiv.org/pdf/2111.12419
源码:https://github.com/Christian-lyc/NAM

三、NAM的实现代码

NAM模块的实现代码如下:

class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels

        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)


    def forward(self, x):
        residual = x

        x = self.bn2(x)
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())
        x = x.permute(0, 2, 3, 1).contiguous()
        x = torch.mul(weight_bn, x)
        x = x.permute(0, 3, 1, 2).contiguous()

        x = torch.sigmoid(x) * residual #

        return x


class NAM(nn.Module):
    def __init__(self, channels, out_channels=None, no_spatial=True):
        super(NAM, self).__init__()
        self.Channel_Att = Channel_Att(channels)

    def forward(self, x):
        x_out1=self.Channel_Att(x)

        return x_out1




四、创新模块

4.1 改进点1

模块改进方法1️⃣:直接加入NAM模块
NAM模块添加后如下:

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:NAM

4.2 二次创新⭐

模块改进方法2️⃣:基于NAM模块C3k2

📌 第二种改进方法是对YOLOv11中的C3k2模块进行改进,其中在C2f提取特征后,利用NAM重新设计通道和空间注意力子模块,从而抑制不太显著的特征,并且在与C3k2结合后,对于细节特征的提取更加敏感,提高模型性能。

改进代码如下:

首先添加如下代码改进C2f模块,并重命名为C2f_NAM

class C2f_NAM(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
        self.att = NAM(c2)

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.att(self.cv2(torch.cat(y, 1)))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.att(self.cv2(torch.cat(y, 1)))

在这里插入图片描述

再添加如下代码让C3k2继承于C2f_NAM,并重命名为C3k2_NAM

class C3k2_NAM(C2f_NAM):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:C3k2_NAM


五、添加步骤

5.1 修改ultralytics/nn/modules/block.py

此处需要修改的文件是ultralytics/nn/modules/block.py

block.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

NAMC3k2_NAM模块代码添加到此文件下。

5.2 修改ultralytics/nn/modules/init.py

此处需要修改的文件是ultralytics/nn/modules/__init__.py

__init__.py文件中定义了所有模块的初始化,我们只需要将block.py中的新的模块命添加到对应的函数即可。

NAMC2f_NAMblock.py中实现,所有要添加在from .block import

from .block import (
    C1,
    C2,
    ...
    NAM,
    C3k2_NAM
)

在这里插入图片描述

5.3 修改ultralytics/nn/modules/tasks.py

tasks.py文件中,需要在两处位置添加各模块类名称。

首先:在函数声明中引入NAMC3k2_NAM

在这里插入图片描述

在这里插入图片描述

其次:在parse_model函数中注册NAMC3k2_NAM模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以ultralytics/cfg/models/11/yolov11m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov11m-NAM.yaml

yolov11m.yaml中的内容复制到yolov11m-NAM.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络的最后一层添加NAM模块只需要填入一个参数,通道数,和前一层通道数一致还需要注意的是,由于PAN+FPN的颈部模型结构存在,层之间的匹配也要记得修改,维度要匹配上

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# yolo task=detect mode=train model=yolov11m.yaml data=data.yaml device=0 epochs=300 batch=16 imgsz=640 workers=10

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, NAM, [1024]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)



6.2 模型改进版本二⭐

此处同样以ultralytics/cfg/models/11/yolov11m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov11m-C3k2_NAM.yaml

yolov11m.yaml中的内容复制到yolov11m-C3k2_NAM.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有C3k2模块替换成C3k2_NAM模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# yolo task=detect mode=train model=yolov11m.yaml data=data.yaml device=0 epochs=300 batch=16 imgsz=640 workers=10

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2_NAM, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2_NAM, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2_NAM, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2_NAM, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)



七、成功运行结果

分别打印网络模型可以看到NAM模块C3k2_NAM已经加入到模型中,并可以进行训练了。

yolov11m-NAM

                   from  n    params  module                                       arguments                     
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  1    111872  ultralytics.nn.modules.block.C3k2            [128, 256, 1, True, 0.25]     
  3                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
  4                  -1  1    444928  ultralytics.nn.modules.block.C3k2            [256, 512, 1, True, 0.25]     
  5                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  6                  -1  1   1380352  ultralytics.nn.modules.block.C3k2            [512, 512, 1, True]           
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  8                  -1  1   1380352  ultralytics.nn.modules.block.C3k2            [512, 512, 1, True]           
  9                  -1  1      1024  ultralytics.nn.modules.block.NAM             [512, 512]                    
 10                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 
 11                  -1  1    990976  ultralytics.nn.modules.block.C2PSA           [512, 512, 1]                 
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 14                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  1    542720  ultralytics.nn.modules.block.C3k2            [1024, 256, 1, True]          
 18                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 19            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 20                  -1  1   1511424  ultralytics.nn.modules.block.C3k2            [768, 512, 1, True]           
 21                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 22            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 23                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 24        [17, 20, 23]  1   1411795  ultralytics.nn.modules.head.Detect           [1, [256, 512, 512]]          
YOLOv11m-NAM summary: 412 layers, 20,054,803 parameters, 20,054,787 gradients, 68.2 GFLOPs

yolov11m-C3k2_NAM

                   from  n    params  module                                       arguments                     
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  1     99840  ultralytics.nn.modules.block.C3k2_NAM        [128, 256, False, 0.25]       
  3                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
  4                  -1  1    396288  ultralytics.nn.modules.block.C3k2_NAM        [256, 512, False, 0.25]       
  5                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  6                  -1  1   1249024  ultralytics.nn.modules.block.C3k2_NAM        [512, 512, True]              
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  8                  -1  1   1249024  ultralytics.nn.modules.block.C3k2_NAM        [512, 512, True]              
  9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 
 10                  -1  1    990976  ultralytics.nn.modules.block.C2PSA           [512, 512, 1]                 
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 13                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  1    542720  ultralytics.nn.modules.block.C3k2            [1024, 256, 1, True]          
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  1   1511424  ultralytics.nn.modules.block.C3k2            [768, 512, 1, True]           
 20                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 23        [16, 19, 22]  1   1411795  ultralytics.nn.modules.head.Detect           [1, [256, 512, 512]]          
YOLOv11m-C3k2_NAM summary: 335 layers, 19,730,451 parameters, 19,730,435 gradients, 66.4 GFLOPs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值