随着语言模型(LLMs)的不断进步,它们的应用变得越来越复杂和精密。随着这种复杂性的增加,评估这些基于LLM的应用程序的性能和准确性也变得更具挑战性。在这篇博客文章中,我们将深入探讨LLM应用评估的世界,探讨可以帮助您评估和改进模型性能的框架和工具。
一、创建QA应用程序
import os
from dotenv import load_dotenv, find_dotenv
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores.docarray import DocArrayInMemorySearch
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_openai import ChatOpenAI
_ = load_dotenv(find_dotenv())
notebook_path = os.path.abspath("__file__")
notebook_directory = os.path.dirname(notebook_path)
csv_file_path = os.path.join(notebook_directory, '..', 'OutdoorClothingCatalog_1000.csv')
loader = CSVLoader(file_path=csv_file_path)
data = loader.load()
index = VectorstoreIndexCreator(vectorstore_cls=DocArrayInMemorySearch).from_loaders(
[loader]
)
llm_model = "gpt-3.5-turbo"
llm = ChatOpenAI(temperature=0.0, model=llm_model)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
verbose=True,
chain_type_kwargs={
"document_separator": "<<<<>>>>>"},
)
二、构建测试数据
在我们评估LLM应用程序之前,我们需要一组可靠的测试数据。生成测试数据有两种主要方法:
1.手动创建示例
传统的方法涉及手动审查您的数据并制作查询-答案对。假设您正在使用一个服装数据集。您可以浏览描述并创建问题,比如“Cozy Comfort Pullover Set有侧口袋吗?”并提供相应的答案。虽然这种方法让您完全控制示例,但它可能会耗费时间,并且在处理更大的数据集时可能不太容易扩展。
# Hard-coded examples
examples = [
{
"query": "Do the Cozy Comfort Pullover Set \
have side pockets?",
"answer": "Yes",
},
{
"query": "What collection is the Ultra-Lofty \
850 Stretch Down Hooded Jacket from?",
"answer": "The DownTek collection",
},
]
2.使用LLM生成示例
您也可以使用LLM本身来生成测试数据。LangChain 提供了 QAGenerateChain,它可以从您的文档自动生成查询-答案对。它是一个可以根据您的数据创建假设性问题和答案的AI助手。
from langchain.evaluation.qa import QAGenerateChain
from pprint import pprint
example_gen_chain = QAGenerateChain.from_llm(ChatOpenAI(model=llm_model))
new_examples = example_gen_chain.batch([{"doc": t} for t in data[:5]])
pprint(new_examples[0]["qa_pairs"])
# Output
# {'answer': "The approximate weight of the Women's Campside Oxfords per pair is "
# '1 lb. 1 oz.',
# 'query': "What is the approximate weight of the Women's Campside Oxfords per "
# 'pair?'}
data[0]
# Document(page_content=": 0\nname: Women's Campside Oxfords\ndescription: This ultracomfortable lace-to-toe Oxford boasts a super-soft canvas, thick cushioning, and quality construction for a broken-in feel from the first time you put them on. \n\nSize & Fit: Order regular shoe size. For half sizes not offered, order up to next whole size. \n\nSpecs: Approx. weight: 1 lb.1 oz. per pair. \n\nConstruction: Soft canvas material for a broken-in feel and look. Comfortable EVA innersole with Cleansport NXT® antimicrobial odor control. Vintage hunt, fish and camping motif on innersole. Moderate arch contour of innersole. EVA foam midsole for cushioning and support. Chain-tread-inspired molded rubber outsole with modified chain-tread pattern. Imported. \n\nQuestions? Please contact us for any inquiries.",
# metadata={'source': '/home/voldemort/Downloads/Code/Langchain_Harrison_Chase/Course_1/OutdoorClothingCatalog_1000.csv', 'row': 0})
通过结合手工制作的示例和LLM生成的示例,您可以快速构建一个强大的测试数据集。
examples.extend([inst["qa_pairs"] for inst in new_examples])
三、手动评估和调试
有了测试数据,现在是时候评估你的LLM应用程序的性能了。最简单的方法是通过应用程序运行示例并检查最终输出。
qa.invoke(examples[-1]["query"])
# Output
# Entering new RetrievalQA chain...
# Finished chain.
# {'query': 'What technology is used in the EcoFlex 3L Storm Pants to make them more breathable and keep the wearer dry and comfortable?',
# 'result': 'The EcoFlex 3L Storm Pants use TEK O2 technology to make them more breathable and keep the wearer dry and comfortable.'}
然而,这种方法可能有局限性,因为它无法提供有关应用程序流程中间步骤或潜在问题的洞察。
1.通过应用程序运行示例
为了更深入了解您的应用程序行为,LangChain提供了langchain.debug工具。当启用时,此实用程序会在应用程序执行的每个步骤中打印出详细信息,包括提示、上下文和中间结果。
import langchain
langchain.debug = True
qa.invoke(examples[0]["query"])
通过检查这个输出,您可以识别检索或提示步骤中的潜在问题,从而让您更有效地找出并解决问题。
"""
Output:
> Entering new RetrievalQA chain...
> Entering Chain run with input:
{
"query": "Do the Cozy Comfort Pullover Set have side pockets?"
}
> Entering StuffDocumentsChain run with input:
[inputs]
> Entering LLMChain run with input:
{
"question": "Do the Cozy Comfort Pullover Set have side pockets?",
"context": ": 73\nname: Cozy Cuddles Knit Pullover Set\n...
}
[llm/start] Entering LLM run with input:
{
"prompts": [
"System: Use the following pieces of context to answer the user's question. \nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\n: 73\nname: Cozy Cuddles Knit Pullover Set\n...
Human: Do the Cozy Comfort Pullover Set have side pockets?"
]
}
[llm/end] [1.89s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "Yes, the Cozy Comfort Pullover Set does have side pockets.",
...
}
]
],
"llm_output": {
"token_usage": {
"completion_tokens": 14,
"prompt_tokens": 733,
"total_tokens": 747
},
"model_name": "gpt-3.5-turbo",
"system_fingerprint": "fp_3b956da36b"
},
"run": null
}
[chain/end] [1.89s] Exiting Chain run with output:
{
"text": "Yes, the Cozy Comfort Pullover Set does have side pockets."
}
[chain/end] [1.89s] Exiting Chain run with output:
{
"output_text": "Yes, the Cozy Comfort Pullover Set does have side pockets."
}
[chain/end] [2.36s] Exiting Chain run with output:
{
"result": "Yes, the Cozy Comfort Pullover Set does have side pockets."
}
"""
# Final Output:
# {'query': 'Do the Cozy Comfort Pullover Set have side pockets?',
# 'result': 'Yes, the Cozy Comfort Pullover Set does have side pockets.'}
四、LLM辅助评估
虽然手动评估很有价值,但随着示例数量的增加,它可能会很快变得乏味和主观。这就是LLM辅助评估发挥作用的地方。
1.获取示例的预测
第一步是通过LLM应用程序运行您的示例并收集预测。
predictions = qa.batch(inputs=examples)
2.使用QAEvalChain进行评分
LangChain提供了QAEvalChain,这是一个基于LLM的链,旨在评估您的应用程序预测的正确性。该链使用LLM理解语义相似性的能力,确保即使预测与预期答案不完全匹配,也能准确评分。
from langchain.evaluation import QAEvalChain
llm_model = "gpt-3.5-turbo"
llm = ChatOpenAI(temperature=0.0, model=llm_model)
eval_chain = QAEvalChain.from_llm(llm)
graded_outputs = eval_chain.evaluate(examples, predictions)
通过评分输出,您可以快速识别需要改进的领域,并对您的LLM应用程序进行迭代。
for i, eg in enumerate(examples):
print(f"Example {i}:")
print("Question: " + predictions[i]["query"])
print("Real Answer: " + predictions[i]["answer"])
print("Predicted Answer: " + predictions[i]["result"])
print("Predicted Grade: " + graded_outputs[i]["results"])
print()
最终输出类似如下:
Example 0:
Question: Do the Cozy Comfort Pullover Set have side pockets?
Real Answer: Yes
Predicted Answer: Yes, the Cozy Comfort Pullover Set does have side pockets.
Predicted Grade: CORRECT
Example 1:
Question: What collection is the Ultra-Lofty 850 Stretch Down Hooded Jacket from?
Real Answer: The DownTek collection
Predicted Answer: The Ultra-Lofty 850 Stretch Down Hooded Jacket is from the DownTek collection.
Predicted Grade: CORRECT
Example 2:
Question: What is the approximate weight of the Women's Campside Oxfords per pair?
Real Answer: The approximate weight of the Women's Campside Oxfords per pair is 1 lb. 1 oz.
Predicted Answer: The approximate weight of the Women's Campside Oxfords per pair is 1 lb. 1 oz.
Predicted Grade: CORRECT
Example 3:
Question: What are the dimensions of the small and medium sizes of the Recycled Waterhog Dog Mat, Chevron Weave?
Real Answer: The small size of the Recycled Waterhog Dog Mat, Chevron Weave has dimensions of 18" x 28", while the medium size has dimensions of 22.5" x 34.5".
Predicted Answer: The dimensions of the small size of the Recycled Waterhog Dog Mat, Chevron Weave are 18" x 28", and the dimensions of the medium size are 22.5" x 34.5".
Predicted Grade: CORRECT
Example 4:
Question: What are some key features of the Infant and Toddler Girls' Coastal Chill Swimsuit, Two-Piece as described in the document?
Real Answer: Some key features of the swimsuit include bright colors, ruffles, exclusive whimsical prints, four-way-stretch and chlorine-resistant fabric, UPF 50+ rated fabric for sun protection, crossover no-slip straps, fully lined bottom, secure fit, and maximum coverage.
Predicted Answer: Some key features of the Infant and Toddler Girls' Coastal Chill Swimsuit, Two-Piece are:
- Bright colors, ruffles, and exclusive whimsical prints
- Four-way-stretch and chlorine-resistant fabric
- UPF 50+ rated fabric for high sun protection
- Crossover no-slip straps and fully lined bottom for a secure fit and coverage
- Machine washable and line dry for best results
Predicted Grade: CORRECT
Example 5:
Question: What is the fabric composition of the Refresh Swimwear, V-Neck Tankini Contrasts?
Real Answer: The body of the tankini top is made of 82% recycled nylon and 18% Lycra® spandex, while the lining is made of 90% recycled nylon and 10% Lycra® spandex.
Predicted Answer: The fabric composition of the Refresh Swimwear, V-Neck Tankini Contrasts is as follows:
- Body: 82% recycled nylon, 18% Lycra® spandex
- Lining: 90% recycled nylon, 10% Lycra® spandex
Predicted Grade: CORRECT
Example 6:
Question: What technology is featured in the EcoFlex 3L Storm Pants that makes them more breathable?
Real Answer: The EcoFlex 3L Storm Pants feature TEK O2 technology, which offers the most breathability ever tested.
Predicted Answer: The EcoFlex 3L Storm Pants feature TEK O2 technology, which is a state-of-the-art air-permeable technology that offers the most breathability tested by the brand.
Predicted Grade: CORRECT
graded_outputs[-1]
# {'results': 'CORRECT'}
小结
评估LLM应用程序是确保其可靠性和性能的关键步骤。通过利用类似LangChain的QAGenerateChain、langchain.debug、QAEvalChain和LangChain评估平台等工具,您可以简化评估过程,深入了解应用程序的行为,并更有效率地进行迭代。无论您是经验丰富的机器学习专业人员还是刚开始学习的人,这些框架和工具都可以帮助您发挥LLM应用程序的全部潜力。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~