近年来,大语言模型LLM越加受到广泛高度关注。为推动基础大模型LLM相关教学与研究,张宏刚教授精心准备了他本学期在澳城大数据科学学院、针对研究生讲授的基础大模型LLM相关课程胶片——《大语言模型基础导论》(研究生课程)胶片,胶片中包括了国产大模型 DeepSeek最近的若干技术内核,特别增添了DeepSeek近期相关技术内容,并在多个微信群中进行了无私分享,受到了广大业界同仁的高度赞誉。
张宏刚教授指出,该授课课件比较基础性,对大模型感兴趣的人员来说(研究生水平),也许有助于了解大模型LLM的技术基础。相关课件Slides已在各个人工智能、计算机技术、大模型、通信网络等交流群分享,期待共同推动基础大模型LLM相关教学与研究。
该ppt共分为8各部分,具体如下:
-
The Background and Basics of Data-Driven Scaling Law, Transformer, andFoundation Models (LLMs/LMMs -Large Language/Multimodal Models);
-
Key Mechanisms and Methods in Data-Driven LLMs/LMMs - Prompt, Fine-Tuning, LoRA, Mixture of Experts (MoE) , Chain of Thoughts (CoT) and RAG;
-
Embodied Al Agents and Data-Driven LLMs/LMMs;
-
Mutual-Play between Data-Driven LLMs/LMMs and Reinforcement Learning;
-
The Mathematical Basics of Generative Pretrained Transformer (GPT) andData-Driven LLMs/LMMS;
-
Diffusion Models, Algorithms and Data-Driven LLMs/LMMS;
-
Telecom LLMs/LMMs, Networked GPT (NetGPT) and other Key Applications;
-
Summary.
张宏刚教授现任职于澳门城市大学数据科学学院,博士生导师。研究方向涵盖认知通信网络、智联网、人工智能、智能计算、语义通信以及网络大模型等前沿领域。曾任教通信原理、信号与系统、数据结构与算法设计以及软件无线电等课程,这些课程涵盖了通信与信息技术领域的基础知识和前沿技术,并在这些领域取得了显著的研究成果,发表了多篇高质量的学术论文。例如,他与团队成员在IEEE Systems Journal、IEEE Wireless Communications Letters、IEEE Trans. Communications等知名期刊上发表了多篇关于通信网络基础设施、代数拓扑视角下的城市蜂窝网络、以及基于深度学习的资源管理等主题的论文。这些研究成果不仅推动了相关领域的理论发展,也为实际应用提供了有力的支持。作为博士生导师,他致力于培养具有创新精神和实践能力的高层次人才。他的学生中不乏在学术界和工业界取得显著成就的优秀毕业生。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓