在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT 系列大规模语言模型的发展历程,有两点令人印象深刻。
-
第一点是可拓展的训练架构与学习范式:Transformer 架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;
-
第二点是对于数据质量与数据规模的重视:不同于 BERT 时代的预训练语言模型,这次大语言模型的成功与数据有着更为紧密的关系,高质量数据、超大规模数据成为大语言模型的关键基础。
如果你对大规模语言模型感兴趣,并希望深入了解它们的原理、设计和应用,下面这些大规模语言模型相关书籍也许将为你提供宝贵的学习资源和启发。
《大规模语言模型-从理论到实践》
-
作者:复旦大学的张奇、桂韬、郑锐和黄萱菁老师
-
这本书2023年9月就已经开放给大家免费下载,书中详细介绍了大规模深度学习模型的理论和实践。从基础知识到前沿技术,涵盖了大大规模语言模型的各个方面,并且还包括一些代码实践的示例。
《大语言模型》
-
作者:中国人民大学的赵鑫、李军毅、周昆、唐天一和文继荣老师
-
这本书2024年3月开放给大家免费下载,对大规模语言模型及其应用进行了全面而深入的阐述。书中内容丰富,涵盖了模型的预训练、微调与对齐以及大模型使用等重要主题。
近一年的时间,本人也花费了大量的时间在写一本关于大模型方面的书籍(清华大学出版社出版,于6月底开启预售),这本书聚焦于大规模语言模型的算法和技术,包括用于训练大规模语言的分布式训练、高效参数优化算法、评估方法,以及大规模语言模型与知识的融合,多模态大规模语言模型等内容,这本书也是理解大规模语言模型背后原理的重要参考资料。
以上这些书籍覆盖了大型神经网络的理论基础、算法原理以及实际应用,无论是初学者还是有经验的专业人士都能从中获得启发和收获。通过深入学习大型神经网络的知识,我们可以更好地应用和推动这一领域的发展,探索人工智能技术的更广阔可能性。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓